Look at what is in this issue:

= RINGMOVE,
by Roy Soltoff
= UPGAT Version 2,
by Scott Toennissen
= PC DMA Transfer,
by Roy Soltoff
i Cars, ROMs, and 102s,
by James Cameron
1w Upgraded Functions for PRO-MC,
by J.F.R. Slinkman

THE MISOSYS QUARTERLY

Volume VIL.iii $10 Summer1993

your data storage problems

LB Version 2.3: Modern up-to-date features provide this newest
release of our Flat File Data Manager with a greater degree of
flexibility and an increased level of ease-of-use. LB still provides
solutely no user programming!

strong data base capabilities with

NOW WITH

COLOR SUPPORT
FOR PC USERS

We've added many features asked for over the past few years by LB users; yet LB is still about the easiest, most
flexible data manager you can use for managing your data. Absolutely no programming is needed to create a database
with up to sixty-four fields; construct input screens for adding, viewing, and editing data; and create your own
customized report. Quickly you define your data fields in response to LB's prompts, and then draw your data input
screen using simple keystrokes - or have LB automatically create your input screen. In no time at all, you're entering
data. Customize your printed reports with user-definable print screen definitions. Or use LB’s define print autogen
module to automatically create Table or Form reports, or over a dozen different address label configurations
including a Rolodex™ card and a 3" by 5" index card. LB is just what you need in a data manager! We even have

many database templates available for download on our Compuserve forum!

Data capacity per database:

LB supports up to 65,534 records per data base; 1,024 characters
(64 fields) per record; and up to 254 characters per field.

Field types supported:

LB allows ten field types for flexibility: alphabetic {A-Z, a-z},
calculated {operations on "numeric" fields using +, -, *, /, with 2-
level of parentheses}, date last modified {YYYY/MM/DD auto-
matically maintained}, dollar {+dddddddd.dd}, floating point
{tdddddddd.dddddddd, literal {any ASCII character}, numeric
{0-9, -, .}, right-justified numeric , upper case alphabetic {A-Z,
automatic conversion of a-z}, and upper case literal { literal with
automatic conversion of a-z}. All field types utilize input editing
verification so invalid data cannotbe added to arecord. Field name
strings can be up to 19 characters long.

Data entry and editing:

LB allows you to design up to ten different add/update view
screens to provide extreme flexibility for seléctively viewing your

database fields. You can customize the appearance of any view
screen by a simple drawing process, or use LB’s built-in autogen
capability. View screen definition even provides an intelligent
line-drawing mode so you can create lines and boxes to enhance
the appearance of your screen image. If your computer supports a
color video adaptor, each view screen can be configured to a
distinct foreground/background color arrangement to increase the
distinction of it’s data viewing.

Using a database password provides the capability of selectively
protecting fields from being displayed or printed without entry of
the correct database password, or they can be protected from being
altered. This is quite useful in a work-group environment. Fields
may be selectively established to require a data entry before a
record being added or edited is saved. You can enable a special
index file to keep track of records being added. This can be
subsequently used, for example, for a special mailing to newly
added customers. Flexible editing includes global search and
replace with wild-card character match and source string substitu-
tion. Search and replace can be performed on all records, or on
records referenced in an unsorted or sorted index file.

Record selection and sorting:

You can maintain up to ten different index files to keep your data
organized per your multiple specifications. Records may be
selected for reference in an index file by search criteria using six
different field comparisons: EQ, NE, GT, GE, LT, and LE. You
can select on up to eight different fields with AND and OR

connectives. Index files can be left unsorted, or you can sort in

ascending or descending order. By associating a sorted index file,
any record can be found within seconds - even in a very large
database.

LB even includes a special Dup command which uses the
sophisticated Ratcliff/Obershalp pattern recognition algorithm
for automatically finding duplicate or near-duplicate records!
Duplicates can then be either manually deleted or automatically
purged using the providled LBMANAGE utility program.

Automatic operation:

For automating your processing needs, LB can be run in an
automatic mode, without operator intervention. Frequently used
procedures can be saved by LB's built-in macro recorder for future
use. Entire job streams may be produced, so that LB operations
may be intermixed with literally any DOS function that can be
batch processed. These named procedures are easily invoked via
a pop-up list-box.

Maintenance utilities:

To make it easy for you to grow your database as your data needs
grow, we provide three utility programs for managing your
database. LBREDEF allows you to construct a new database with
an altered data structure and populate it with data from your
existing database. This facility is great for adding new fields, or
deleting fields no longer needed. Or you can use LBREDEF to
redefine the field type of an existing field and convert the existing
data. Another utility, LBMANAGE, allows you to duplicate your
database structure, copy or move records from one to another, or
automatically purge un-needed records.

A third utility, LBCONY, convertsto LB from pfsFILE4, Profile4,
DIF, dBASE 11, dBASE III, and fixed record. It also converts to
DIF, dBASE, and tab or comma delimited files to enable easy
porting of LB data to other systems.

Report generation:

Report generation incorporates a great degree of flexibility. Your
report presentation can be totally customized through print defi-
nition formats which you define on the screen as easily as you
define the add/update view screens. You can truncate field data,
strip trailing spaces, or tab to a column. You control exactly where
you want each field to appear on your report. LB provides for a
report header complete with database statistics: database name,
date, time, and page numbers. A reportfooter provides subtotaling,
totaling, and averaging for calculated, dollar, floating point, and
numeric fields; print number of records printed per page and per
report.

Many report formats can be automatically created by LB’s define
print autogen module. You specify your printer type and character
size from a pop-up list-box. Select one of four canned report
formats: narrow or wide carriage Table reports; a Form report; or
an address mailing label using one of six different sizes of labels
including labels printed two, three, and four across. Label formats
also include formatting for a Rolodex™ card and a 3" by 5" index
card. Label formats automatically select the needed fields from
your database definition.

For printing, associate any of the ten index files and you control
exactly what records get printed; even a subset of indexed records
can be selected for printing to give you a means of recovering from
that printer jam halfway through your 30-page printout. You can
even force a new page when the key field of an index file changes
value. Up to ten different printout definition formats can be
maintained for each database. Reports may be sent easily to a
printer, the console display screen, or to a disk file - useful for
subsequent printing or downstream data export to other programs.
Report formatting allows for multiple across mailing labels,
multiple copies of the same record, or even form printing one
record per page for sales books. You can easily generate mail/
merge files of address or other data for your word processor. Or you
can use LB's built-in form letter capability.

Help is on the way:

The main menu even provides a shell to DOS so you can tempo-
rarily exit LB to perform other DOS commands. LB provides
extensive on-line help available from almost every sub-command.
A200-page User Manual documentsevery facetof LB's operation.

Competitive Trade-up policy:

Send in an original Table of Contents page from any
existing database program and get LB Version 2 for half
price. That’s only $49.50 + S&H!

Ordering Instructions

Specify MS-DOS (and media size) or TRS-80/4 version.
LB is priced at $99 + $5 S&H US ($6 Canada; $7 Europe;

$9 Asia, Pacific Rim, and Australia).

MISOSYS, Inc.

PO Box 239
Sterling, VA 20167-0239

703-450-4181 or orders to 800-MISOSYS

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

The MISOSYS Quarterly is a publica-
tion of MISOSYS, Inc., PO Box 239,

Table of Contents

Sterling, VA 20167-0239, 703-450-4181. The Blurb Letters to MISOSYS
. . . TMQ Index 2 Spurious Keystrokes 6
Unless f)the.mse SP e?lﬁed, all. material Upcoming at MISOSYS 2 Public Domain smallC 7
appearing in herein is Copyright 1993 | poipi 1 ponder 2 Cheap Shots 7
by MISOSYS, Inc., all rights reserved. Trade-in Policy 3 LB and paths © Z
In this issue... 3 Laser Printers for TRS-80s
THE MISOSYS QUARTERLY TMQ Schedule 4 SuperScripsit & Lasers 9
Subscriptions are no longer being MISOSYS Forum 4 External Jumbo 9
accepted for The MISOSYS Quar- DISK NOTES 7.3 4 LB/LB86 Print Bug 9
terly. LB Templates 4
DOS Manuals 4 Inside TMQ
MS-DOS Products 4 RINGMOVE 10
TMQ Toolbox SCSI Driver 5 UPGAT/CMD Ver. 2.0 19
FAX Number 5 PC DMA Transf 21
The MISOSYS Quarterly is published Closeouts 5 Cars. ROMs andelr023 26
using the following facilities: Used Diskette Clearance 5 Upgraded Functions for Pro-MC 34
The hardware used to produce the “camera - Hardware Clearance 5
ready” copy consists of an AST Premium/ Used Software 5
386 computer (20 MHz) with 9 Megabytes
of RAM, a Seagate ST4096 80M HD, ST251
40M, Expanz! card; a CMS DJ10 tape
backup, aNEC Multisync I monitor driven
by a Video Seven VGA card, an AST Tur-
boScan scanner (Microtek MS300), and a
NEC LC-890 PostScript laser printer.
Text is developed, edited, spell-checked,
and draft formatted using Microsoft
WINWORD Version 1.1; Submissions on
paper and letters are scanned and con-
verted totextusing ReadRightoptical char-
acter recognition software by OCR Sys-
tems. Final page composition is developed
using PageMaker 4.0 by Aldus.
List of Advertisors
MISOSYS, Inc. 36-38
Pacific Computer Exchange 33
Roy T. Beck 33
TRSTimes magazine 35
List of Patches/Updates in this Issue
Revised LB1 Print Module [available only on demand] *
The Blurb -1- The Blurb

Volume V1L.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VIIiii

TMQ Index

In this column of the last issue, I an-
nounced the availability of an index to all
pastissues of The MISOSYS Quarterly. In
the intervening months, I have received
orders for two printed copies and no disk
copies. Because of the dismal demand, the
index is discontinued.

|

Upcoming at MISOSYS

As this is being written, the conversion of
LB86 MS-DOS version database to a
DeskMate environment is approximately
50% complete. Itappears that LBDM?will
be either a one or two program package
(not counting utilities). I have completed
the database definition module, the screen
definition module, the entire pull-down
menu-driven frontend, the screen presen-
tation, the ability to view and edit path file
definitions, and the ability to view field
data. Essentially left to implementation is
the sort and select module, the print screen
definition, and the report writer.

LBDM? uses the identical database struc-
ture as LB and LB86; however, it was
apparent that to provide graphical features
in the view screen, it was necessary to
design a completely new view screen file
structure. LBDM?’s screen is object-ori-
ented; it currently supports five different
objecttypes: lines, beveled rectangles, text
strings, data fields, and DeskMate DRAW
figures. The screen designer has total con-
trol over the color, width, and type of each
individual line. The designer also has
complete control over the color, width,
bevel, fill, and pattern for rectangular
objects (beveled rectangles collapse to a
rectangle with a bevel of zero). Each text
string can have its own foreground and

background color as well as character
attributes (bold, underline, inverse, and
grayed. All data fields currently supported
by LB are supported in LBDM?, Data field
viewing, however, uses DeskMate edit
fields. Because of the capability of built-in
scrolling, a maximum horizontal window
of 64 characters in width is provided with
the field contents scrollable within the
view window. Fields can also be bordered
with a flat box or raised box (or no box) at
the user option. Any number of DRAW
figures can also be placed on the view
screen.

Rather than have specific upper limits on
the quantity of objects which can be placed
on a screen, LBDM?s screen files are
variable length; a data structure defines
the number of each object type. During
screen definition, the designer can select
and move an object about the screen for
placementrevision (or deletion). Currently
select, move, and relocate is the means by
which objects are relocated, however, ob-
ject drag and drop will be implemented.
Selected objects can also be edited as to
their individual characteristics: color,
width, pattern, type, etc.

With but one exception, any time a field
reference is needed, it is selected from a
pop-up dialog box with the list of fields
referenced in a list box. The one exception
is the field reference within a calculation
string.

The screen designer also includes an auto-
matic design option which is similar to the
autogen feature in LB86. The option has
been enhanced to configure a view screen
with either one or two columns of data
fields - automatically limiting each data
field's view window to fit within the allo-
cated region.

Depending on the shift of my time to
outside employment, I may not reach my
target of a summer release of LBDM?;
however, it should make itout the door this
year. There will be some features of LB86
which won’t make it in to LBDM? - such
as “Run Automatically”. But to compen-
sate, LBDM? already has features that are
not in LB86. There’s always a trade-off.

I
Points to Ponder

According to an article in Electronic En-
gineering Times, trillions of bits per square
inch in data storage may soon reach frui-
tion based on research at Kyoto University
using photochemical hole-burning tech-
niques (PHB). Kazuyuki Hirao, the re-
searcher, workedatroom temperature with
boric acid glass doped with samarium
ions. A variable wavelength laser is used
to excite electrons in the medium which
changes their absorption characteristics
resulting in a “hole”. Bit detection is per-
formed when light passes through without
being absorbed.

The boric acid glass is widely used in the
manufacture of heat-resistantkitchenware;
thus, production techniques are not diffi-
cult. However, further technological ad-
vancements must be made in the develop-
ment of lasers whose wavelengths could
be stepped in 0.01nm, as well as an in-
crease in the read/write speed (currently
about one second).

According to Dave Webb, writing in Elec-
tronic Buyers News in response to Intel’s

The Blurb

The Blurb

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

recent $2 Billion in revenue per quarter,
“In the old days, IBM used to make more
in profits than anyone else did in revenue.
It’s entirely possible Intel is coming into
that mode.” Now I don’t know about you,
but a profit of over $500 million on rev-
enue of $2 billion for three months means
a huge number of processor sales. Sev-
enty-five percent of their revenue comes
from CPUs. Too bad IBM dumped most of
their Intel stock a handful of years ago.
Why injustone year, Intel’srevenue could
equal the net worth of Bill Gates!

Ifound itinteresting to read that Japanese
companies supply 60% of the world’s
color CRT’s,and 100% of the 15-,17-,20-
, and 21-inch color CRT’s. That’s why a
recently announced price increase of 6%
has sent shock waves around the world.
Big waves hit Taiwan, which now manu-
factures 47% of the world’s color and
monochrome monitors. So look for mgni-
tors to edge up in price.

Didyou know that the electronics industry
uses about 7% of the lead in the United
States? That stems from use in solder,
wire, cable, dry-cell batteries, and radia-
tion shielding in CRT’s. The electronics
industry trade associations are therefore
fighting a 45-cent per pound lead tax
being proposed by Representative Cardin
(D-Md). The tax is designed to remove
lead-based paint from child-care centers
and residential structures.

I'mentioned in a previous Blurb that com-
puters may one day be at the bottom of the
heap in the world’s use of RAM chips.
Well, it appears that computers may also
lose their dominance in the use of high-
powered microprocessors. CPUs have al-
ready been widely used in all sorts of
electronic equipment in embedded appli-
cations. CPUs will now be migrating to the
TV set and cable convertor boxes.

Intel announced they are joining with
General Instrument Corporation and Mi-
crosoft (in what business are they not
placing their tentacles?) to develop smart
cable converter boxes using 386 chips for
interactive TV. Most likely, a windows-

type on-screen interface will be provided
to enable TV viewers to “easily navigate
among potentially hundreds of cable chan-
nels and services”.

How much music do you get on an audio
CD? In most cases, it’s approximately 75
minutes maximum. But look out, a Japa-
nese petrochemical company has devel-
oped a new synthetic resin which should
permit ten times as much material to be
recorded on a CD-sized disk. The new
thermo-plastic X, called TPX for short,
has sixteen times less viscosity than the
polycarbonate structure currently used in
CDs. That should permit the imprinting of
data at a much higher track density.

I remember when a perm meant a trip to
the hair salon. Not so for Sony! Their new
Pre-embossed Rigid Magnetic technology
(PERM) is a process whereby servo infor-
mation is written into grooves cut into the
surface of a disk. The facility allows in-
creased track density providing a proto-
type 2.5" platter with 5,000 tracks perinch
- or a capacity of 200 megabytes. That’s
just a little greater than the width of the
JKL keys. They expect to eventually in-
crease the track density to 15,000 tpi.

Remember pricing on the TRS-80 Model
I?Thebase 16K Level Il was $999. Memory
additions of 16K were in the range of
$250. The expansion interface was $299.
Radio Shack floppy drives were $499. You
even had to pay $16.95 for a three pack of
single-density diskettes. Iremember a few
of us in the computer club grouped to-
gether to buy diskettes directly from Ver-
batim in boxes of 100 - even then they were
hard to get. Irecollect feeling like I suspect
a drug dealer would feel making these
clandestine calls - “Hey, got any in yet?”
List price on a Line Printer IIT was $1960;
I got a used one closed out with a bad
printhead for $10. Remember a64K Model
II for $3899? :

Well DEC’s new 64-bit Alpha PC with a
150 megahertz processor, 32 megabytesof
RAM, 600 megabyte CD-ROM, Ethernet
LAN port, a 3.5" 2.88 megabyte floppy, a
high-resolution SuperVGA monitor, and

a426 megabyte SCSI hard disk drive was
unveiled at Windows World in late May
for a price of $6995. The Alpha processor
is a 300 million instructions per second
chip. Douglass Hamilton, president of
Hamilton Laboratories Inc.,developerofa
UNIX development tool environment,
“This machine is dynamite. It’s faster than
any machine I’ve ever worked on.”

So what do you have to say about the sale
of Tandy’s computer manufacturing busi-
ness to AST Research?

Trade-in Policy

With the closeout of most TRS-80 prod-
ucts, our trade-in policy exists solely for
our LB database and remaining MSDOS-
related products. The policy, where appli-
cable, is to just send in an original Table
of Contents page from an equivalentnon-
MISOSYS software product with the trade-
in fee which is 50% of the price of our
product. So for LB 2.3, trade in any other
database productand youcanpurchase LB
orLB-86 for$49.50 plus S&H. How’s that
for a deal? It doesn’t matter for what
system or operating environment your
trade-in was designed for. This offer does
notextendto productsre-soldby MISOSYS
or products on sale.

In this issue...

Continuing with the C venue, though not
in tutorial form, I bring you a useful
ringmove algorithm for optimizing the re-
ordering of index-sorted data. There s also
an article which sheds light on a obscure
problem when using DMA on a PC. A
handful of contributed entries make up the
remainder of this next to last issue.

The Blurb

-3-

The Blurb

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VIIL.iii

TMQ Schedule

Folks, there’s but one more issue of The
MISOSYS Quarterly left to go. Anyone
who has a “93/08” on their mailing label
will be sent that issue in approximately
three months. TMQ will cease publication
with issue VILiv. I currently have some
copies of Volume VI which can be had for
$4 per issue - plus S&H.

MISOSYS Forum

I sponsor a forum on CompuServe. You
can reach some “experts” on TRS-80 and
MS-DOS subjects by dialing in, then GO
PCS49, or GOLDOS. Thisis probably the
oldest forum still-surviving from the
MicroNet days. If you want to see it con-
tinue, how about popping on for a chat or
a question.

The forum contains many programs to
download, as well as lively discussions
which thread through the message system.
You can direct a message to me at
70140,310. Post a message in private if
you don’t want it “broadcast”.

DISK NOTES 7.3

Each issue of The MISOSYS Quarterly
contains program listings, patch listings,
and otherreferences to files we have placed
onto a disk. Where feasible, the text ac-
companying an article is also on DISK
NOTES. DISK NOTES 7.3 corresponds
to thisissue of TMQ. The disk is formatted
usually for TRS-80 LDOS/LS-DOS users

at40D1 (that’s 40 tracks, double density,
one sided). MS-DOS users can request a
5.25" 360K disk. If you want to obtain the
fixes and the listings, you may conve-
niently purchase a copy of DISK NOTES
priced at $10 Plus S&H. The S&H
charges are $2 for US, Canada, and

Maexico, $3 elsewhere.
|
LB Templates
|
Please note the availability of the follow-

ing LB database templates:
LB Template Disk 1
DRA Dragon magazine ar-
ticle index
GAMEINV Role playing game in-
ventory
LEAP Parent group address
roster
PROP Valuable property
record
PTA PTA roster
STAMPS Stamp collection
STREK Star Trek collection in-
ventory
viD Video Tape and Laser
disk library
LB Template Disk 2
AUD Catalog of audio disk/
tape collection
COMPUTER Catalog of owned com-
puter equipment
CREATURE Catalog of adventure
game creatures
LIB Library card catalog
MAILFILE Address mail list / LB
database example
MISOSYS Customer information
database

To use any template, simply copy the files
to your data drive, create a path file using
LB menuoption 14, thenadd your data. To
create a template for others, simply use

LBMANAGE to duplicate your database,
then copy the new set of files to another
disk. Submit your templates to MISOSYS
for publication. They are available at $10
per disk + $3S&H, or free for download
from our CompuServe forum. An MS-
DOS 360K disk will hold a pair of tem-
plate disks.

DOS Manuals

Iwill continue topublish both the “LDOS™
& LS-DOS™ Reference Manual” which
covers LDOS 5.3.1 (Model I and III) and
Model4 LS-DOS 6.3.1, and the “LDOS™
&LS-DOS™BASICReference Manual”,
which covers theinterpreter BASIC which
is bundled with LDOS 5.3.1 (even the
ROM BASIC portion), the interpreter
BASIC which is bundled with LS-DOS
6.3.1, and both Model I/Ill-mode and
Model 4-mode EnhComp compiler BA-
SIC. The DOS disks will continue to be
made available. There are no more “Up-
grade Kits”.

MS-DOS Products

I still have some Tadiran TL-5296 6V
lithium batteries usable in most AT-class
machines. Don’t wait for your battery to
fail and lose your configuration data. A
spare’s shelf life will probably out last
your machine.

LB86 continues to be available as a useful
data base manager.

The Blurb

-4 -

The Blurb

VYolume VIILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VII.iii

SCSI Driver

L] . L] . L] L]

MISOSYShasaSCSIdriver, H-HD-SWS,
available for use with our H-HD-MHA
Model I11/4 host adaptor. The SWS driver
is for directly supporting a Seagate SCSI
drive or exact equivalent; it can handle a
drive up to eight heads and 1226 cylinders
(approximately 80 megabytes). Seagate
drives which are in this capacity range
include the 48MB ST157N, the 60MB
ST177N, and the 84MB ST1096N. These
drives are out of production, however, re-
furbished drives should be available at
reasonable prices. Drivers for both Model
1T and Model 4 modes are included. As of
this writing, three folks have purchased
the driver. With thatkind of sales volume,
I might just retire to Tahiti!

FAX Number

If youwanttoreach usby fax, try 703-450-

o
[%]
—
w

Closeouts

. * L] L] L] o L] L] L] L) . . L] L] L] L] L]

The big debate continues as to what to do
with these old TRS-80 products. My close-
out date of June 15th 1993 has come and
gone. I am out of pre-printed documenta-
tion for a number of products: AFM,
DoubleDuty, DSMBLR/PRO-DUCE, all
three GO products (Maintenance, System
Enhancement, Utility), HDPACK, Host/
Term, MC/PRO-MC, MRAS/PRO-
MRAS, PowerMail, RSHARD, Cornsoft
Group Game Pack. These are all now
discontinued. Other than the DOS ver-

sions, DOS manuals, and LB Database
Manager, all other TRS-80 software prod-
ucts are discontinued. If I am able to find
the time to rework documentation into a
disk-file format, I will migrate selected
products to shareware status. Now then, if
folks want that process sped up, how about
some volunteers who will be able to take
documentation files along with program
disks and build up archived sets of disks
available for shareware duplication. You
will need the capability of accessing docu-
mentation files written using SCRIPSIT,
ALLWRITE, SuperScripsit,and Microsoft
WORD.

Used Diskette Clearance

I have many cartons of used floppy dis-
kettes - both 5.25" and 8". Most disks were
used forarchiving files and have beenused
very infrequently. All have labels affixed
which are difficult toremove. Justtoclean
house, I will sell these disks dirtcheap. All
disks will be bulk erased; sleeves are gen-
erally not available. Prices are as follows
(shipping charges are additional)::

8" DS-DD $0.40/each

8" SS-DD $0.25/each

5.25" §SS-DD $0.15/each

5.25" SS-SD $0.10/each
|

Hardware Clearance

Over the years, MISOSYS has accumu-
lated TRS-80 hardware and related equip-
ment in excess of current needs. The fol-
lowing items are now classified as surplus
and are available for sale to the first takers
(shipping charges are additional):

+ Tandy color 2000 e/w stand $150
+ Tandy 1000 & mono monitor $100

» TRS-80 Model 4P (gate array)$100
» TRS-80 Model 4P (gate array)$100
+ TRS-80 Model 4D e/w XL.R8er and
MicroLabs Graphics board ~ $150
TRS-80 Model III (working) $25
TRS-80 Model III (no video) $15
Tandy DT-1 Data Terminal =~ $15
Amdek Video-300 Monitor ~ $25
BMC Monitor (for MAX orM1) $15
15 Meg Primary Radio Shack HD
$150

12 Meg Secondary (bad drive) $25
DMP-500 line printer $75
Line Printer III (no printhead) $10
Radio Shack Modem II $10
Well-used bare floppy drives of vari-
ous brands $5

L] L] . . *

Used Software

The followingitemsof used software pack-
ages are available for purchase. These are
items accepted as trade-ins or otherwise
accumulated. If you have an interest, I
will sell all of these packages - approxi-
mately two cartons - for $50 + freight.
Allitems must go in the next three months

or they hit the landfill.
+ Radio Shack C, 26-2230 $15
pfsFILE, Model 4 26-1518 $15
pfsFILE, Model 3 26-1515 $15

Series | EDTASM I/III 26-2013$10
Radio Shack ALDS 26-2012 $15
Profile 3+ 26-1592 $15
Compiler BASIC (IIT) 26-2204 $15

ZEN EDTASM $5
Quikpro+ $5
ZBASIC 2.21 $5
Level I BASIC Instruction Course $5
Sargon II (cassette) $5
Interlude (Model I) $s
Gambiet 80 (mod-I tape) $5
Macro-Mon (Model III disk) $10

Personal Finance 26-1602 $10
Blackjack/Backgammon (mint) $5
Microchess 1.5 26-1901 $5

A

The Blurb

-5 -

The Blurb

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

MISOSY

Letters to

A

I
Spurious Keystrokes

Fm Will Ramsey, Jr.: DearRoy: I haven’t
written to you in a long, long time and I
didn’t want you to feel neglected or that I
had forgotten about you!

Idon’thave any real problem or anything,
so obviously this is a matter of extremely
low priority, but this question has both-
ered me for years, so I thought I would
finally go directly to the horse’s mouth to
get the answer (if there is one).

Since the very early days when we got our
first Model 4 we have had this problem.
We have had it with versions 6.0,6.1,6.2,
and 6.3 of DOS. The problem is that
somewhere in the keyboard software (at
least I have always assumed it to be soft-
ware, since we have the problem on all our
computers) we get extra letters when cer-
tain keystroke sequences are typed.

Some of the most common are illustrated
below:

We type: The screen shows:
failure faidlure

claim claiem

plaintiff plaifntiff

remain remaifn

would womuld

There are other examples, but these seem
to be the most common. There seems to be
a pattern in words with “ai” and “lai” in
them, but that doesn’t expalin “would”
coming out“womuld”. Also, generally the
extraletterisan “f” butnotalways,aseven
these examples illustrate.

Several years ago I wrote 80 Micro and
asked if anyoneknew what caused this, but
they never bothered to reply or print my
inquiry in one of their open forum depart-
ments.

I'have always felt that it might have some-

thing to do with our typing speeds. I type
well over 100 WPM and our typists are in
the 120 WPM range, and we use the
computers almost exclusively for word
processing. However, it seems that I have
had this happen even when I was typing
relatively slowly. Itdoes happenin DOS as
well as when we are using the word pro-
cessing program (Scripsit Pro).

Idon’tknow if you have ever run into this,
but I would be interested to know your
thoughtsonit. Again, thisisabsolutely not
critical, but some day when you're sitting
around with nothing to do <<yeah,
right!>> you might put on your thinking
cap and think about this one for a while!

I hope all is well with you and yours, and
I'm looking forward to the next TMQ.
Best personal regards,

Fm MISOSYS, Inc: Dear Will: Thisis in
response to your letter concerning extra-
neous characters. Your problem - and that
of your typists - is that you all are typing too
fast for the proper operation of the key-
board. Let me explain. When you press
down one key of a keyboard, a circuit
closure is sensed by scanning each row in
turn then reading the result of the column.
The data value then read can be decoded to
aparticularkey given the row thatresulted
in a non-zero value. Okay, so what hap-
pens when you press down more than one
key simultaneously. Depending on the
way the keyboard is manufactured, you get
a data value unexpectedly different from
what you believe you should get.

Try this on your Model 4: Simultaneously
- using three fingers - depress the keys [4],
,and [T]. Do it repeatedly and you will
find that some times, the letter “D” pops
up. This is exactly the phenomenon that
you are getting “faidlure” for “failure”.
Try pressing the triad, and you
will get an extraneous “F” at times; this is
where you get “plaifntiff” for “plaintiff”.
Lastly, press the triad, and you
will pick up an extraneous “M”.

All computer keyboards operate via a
matrix: there are rows and columns where

Letters to MISOSYS

-6 -

Letters to MISOSYS

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VII.iij

each juncture represents a key. Look at
page 13 of the Winter 92/93 issue of The
MISOSYS Quarterly for an example of a
keyboard matrix. Follow the keycaps of
the domestic keyboard and you will see
that the extraneous key which is generated
falls at the fourth corner of a rectangle
formed from the triad of keys identified
above. What is happening is that the three
keys are electrically depressed simulta-
neouslyresulting inaclosure being sensed
in the fourth corner. You can generate
many other spurious key codes: press
and you get a “K” - not too
common since that triad is unusual for a
sub-string of a word. On the other hand,
type the word (@] [U] [T [€] [K] too fastand
the “ICK” is liable to generate a spurious
“A”,

I rarely ever get this kind of a problem
because I never learned to touch type.
Your only solution is to either slow down,
or find a top-quality keyboard with much
faster sensing circuitry and keys with less
electrical contact bounce. Incidentally, this
topic hasbeen discussed to death yearsago
as the problem was infamous with the
Model I keyboard.

I
Public Domain smaliC

Fm MISOSYS, Inc: Frank Slinkman in-
formed me a few months ago that David
Gobenreleasedasmall Ccompiler (Idon’t
get CN80 so I have no way of keeping up
with what Stan Slater has been publishing
unless someone tells me - although I un-
derstand there has been a lot of spleen
venting lately). I thought that odd as a
version of Ron Cain’s original smallC C
compiler was available years ago in a
public domain TRS-80 version. I told Frank
that I would try to dig up the smallC
version Iremembered seeing in one of the
many boxes of disks in my office. Well, on
April 14, 1993 I found the copy of the

Model 4 version of smallC and sent it
along to Frank with the following cover
letter for his possible disemmination of the
disk to those having an interest.

Well, Frank, I located the smallC disk I
was telling you about. I really had to dig
back into the archives. It was a version of
RonCain’s (the original smallC) compiler
adapted for TRSDOS 6.2. As you can tell
by the file dates, it was available in Decem-
ber 1984 - almost ten years ago. Much
documentation has existed in the past on
using the compiler; most appeared in Dr
Dobbs Journal, and there also were a few
books available. I would suspect that any-
one with a little research could dig up the
reference material.

Have fun with this. The source code is
there for the library and the compiler. So
much for Goben’s small C ten years after
the fact. Where has he been?

I
Cheap Shots

Fm Richard James: Dear Roy, I'm en-
closing the mostrecentcopy of The Misosys
Quarterly which was sent to my home
address. I have already received one copy
at my business address, and I don’t need a
second copy. I would appreciate your up-
dating your records so that I receive just
one copy.

I also want to let you know that the soft-
ware you have distributed to the TRS-80
community (particularly LDOS) is of su-
perb quality and is the equal of any soft-
ware I have used on the TRS-80. I am
dismayed at David Goben’s cheap shots
about your software. I have purchased two
of his products and neither has been reli-
able. His PACK product will not work
properly on any BASIC program which
contains two consecutive null characters,

,although the DOSPLUS CRUNCH utility

works fine. Inaddition, David’sFBACKUP
utility will not work reliably if called from
within a BASIC program because it evi-
dently doesn’t respect the memory ad-
dresses used by BASIC. I reported the
PACK problem in some detail to David,
and his response was a sarcastic refusal to
fix the problem.

These reliability problems are significant
for me because I am providing software
and support for about twenty TRS-80 us-
ers in my company. I have never experi-
enced any reliability problems or a sarcas-
tic attitude in my dealings with you, and I
wantto let youknow thatI appreciate what
you have done.

|
LB and paths

Fm William E. Holmes: Dear Roy: Thank
you for conferring with me on the phone
yesterday concerning asmall problem with
LB Data Manager. After considering the
matter, I have decided to leave my fields
like they are, because having some of the
last names out of alphabetical sequence
with the first 5 digits of the ZIP is really of
little significance. I mainly need them in
ZIP order for mailing. If I need an alpha-
betical listing by club, I can easily get that
by using CLUB as the primary select field.

We discussed briefly the ability to use a
Temporary drive to hold my basic data file
in order to speed up searching operations.
It seems to me that the instructions under
Menu #14 -Verify/Modify Path Settings
arerather brief and don’t seem tocovermy
situation.

First, let me describe my system. I am
using a TRS-80 Model 4-D (two double-
sided drives, 360K each), 64K RAM, with
Anitek’s Megamemory (2MEG)installed.
Ihave prepared aminimum system disk on
whichIhaveinstalledLBand MEGADRV

Letters to MISOSYS

.‘7_

Letters to MISOSYS

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VII.iii

to initialize Anitek’s megadrives. Upon
startup I place this disk in the original
Drive :0 (the lower one) and issue the
command MEGADRY 0,10/A, which es-
tablishes a Megadrive :0 of 320K and
copies all the files from the original drive
:0 to it. The installed lower drive then
becomes :1 and the upper one :2. I can
establish Megadrives :3 and :4 at up to
352K each.

I'have beenusing this configured sytem for
the data base named LION, which pres-
ently has nearly 1,700 records, with drive
:2 (the upper floppy) as the data file, drive
:1 (lower floppy) for the index and
Megadrive :3 specified as the working
drive during sorting. Searching for arecord
ondrive :2 seems to take quite a long time.
I'would like to use one of the Megadrives,
but I want to be assured of having my data
saved on a floppy disk, in case of power
failure or other catastrophe. I can’t deci-
pher how to do this from the two pages on
this subjectin the manual. Please help me.

On another subject, which we also dis-
cussed briefly, I am considering procuring
an IBM compatible computer, as there
doesn’t seem to be too much future for my
TRS-80’s (I have two them - this4-D and
another one converted to two-sided drives,
this one being used primarily for Amateur
Radio Packet operations). I understand
thatI would have to have another Program
disk, butIshould be able to Hypercross my
data files. Please give me a quote on the
IBM compatible disk.

Thanks for helping this 74-year old fellow
conquer LB to the extent of keeping files
for making mailing labels. Previously, I
have used ALLWRITE, which is extinct.
T'hadto use five different files formy 1,700
records and had no sorting capability. I
think I am going to like LB as I continue
to learn some of its “tricks”.

Fm MISOSYS, Inc: Dear William: This
isinresponse to your letter concerning the
use of a RAM drive for LB. What I was
trying to say viatelephone, wasthatthe LB
sort operation could be sped up consider-
ably by establishing the temporary drive as

aRAM drive. True, if you have the RAM
drive capacity, you could speed up the
entire operation of LB’s data access by
copying your data file (name/DEF and
name/LB)toaRAMdrive; however, if you
are going to do any data updating, I really
would not recommend that.

The sort process in LB requires the use of
temporary storage if the amount of avail-
able memory (in the normal DOS address
space)isinsufficienttohold the sort strings
and index pointers. It is the placement of
the temporary work file(s) onaRAM drive
which then speeds up the sorting. Ibelieve
that in your configuration, drive :3 is a
RAM drive; you have properly established
the PATH specifications for the Temp
Path as “:3”.

Now then, if you want to access your data
from the RAM drive (without updating it),
simply copy the two files noted above to
your RAM drive prior to invoking LB;
invoke LB and change the Data Path speci-
fication for the database to the RAM drive
prior to selecting the database name; then
select the database with menu option 1.

Lastly, if you wish to convert over to the
MS-DOS version of LB (LB86), you can
do so for half price ($49.50 + $5S&H).

Laser Printers
for TRS-80s

Fm Martin J. Rapoport: I am constantly
reading about how the Radio Shack Com-
munity needs to share information and
ideasin order for us to maintain our Model
IIIs and 4s. And yet, when I wrote a letter
concerning my use of a laser printer with
Model4 Superscripsit, it was never printed.
I'am not looking for a pat on the back, but
1 have gotten many ideas and changes
through the Radio Shack after-market
network in general, and you in particular,
and I wanted to give something back.

I am running my accounting office with
two Model 4Ps, using Seagate 40 Meg
drives (thanks to you), harddrive boot
capability (thanks to TRS Times), softboot
to Model III mode (thanks to both), 360
5.25" and 720 3.5" floppies set up for 8
physical/logical drives. I use twoMSDOS
machines for all tax work, but I will not
give up my Model 4Ps and Model 4.

Every article I ever read said that we
cannot run Superscripsit with a laser
printer because there are no drivers, and
Superseripsit resets the printer if you pre-
set it. This letter, and the letterhead, is
being written on a Model 4, using
Superscripsit and a laser printer.

I would think that there are a lot of users
who would be interested in knowing how.
If you wish, I can write an article detailing
the key points. Itisactually very simple for
the knowledgable user. If not, then I will
at least know that I tried. Incidentally, my
own setup for the Epson LQ1050 works
better then the Epson drivers I bought. I
could not make them double underline,
but my driver does. I have both the laser
and Epson in the same driver so that I can
actually run either one if I omit printer
codes.

Fm MISOSYS, Inc: Sorry, Martin, butdo
to space limitations (and trimming a sec-
tion to a page boundary) resulted in your
last letter getting deferred. There is space
in this issue to print it.

Now I have printed articles on using laser
printers with the TRS-80. According to
my copy of the TMQ index, I see 300 Dots
onthe TRS-801inissue V.i,and 300DOTS:
An Update, in issue V.iv. Also, there has
been a few letters relating to Gary
Shanafelt’s and Dr Lee C. Rice’s laserjet
and deskjet utilities for Allwrite. It was
also noted that Goben has a laser printer
driver for Supercripsit and Scripsit Pro.
But if you have something further to add,

. submit it and I will see if there is room for

it. There’s one more issue to go for The
MISOSYS Quarterly.

Letters to MISOSYS

-8 -

Letters to MISOSYS

Volume VILiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

|
SuperScripsit & Lasers

Fm Martin J. Rapoport, P.O. Box 315
Trexlertown, PA 18087 [215-398-1401]:
It has been my understanding that the
Model Superscripsit will not work with
laser printers. The ones that might cannot
double -underline. This letter is being
printed using Superscripsit. The printer is
a KYOCERA F-800A usin a Qume II
emulation and legal character set.

Iguess weare still finding waystokeep our
Model 4’s up-to-date with technology. I
got lucky on this one, but it just extended
the report preparation life of the Model 4
by about five more years.

A patch has to be made to the original
DW?2/CTL to change the double-under-
line character. The patch we made was:

Patch DW2/CTL (X’BC74 =1EBC)

‘We had previously made a patch to the
same addresstorun a Star Powertype daisy
wheel using alegal wheel. That patch was:

Patch DW2/CTL (X’BC74 =1E7C)

We have also made a patch that allows us
to use the Epson LQ-1050 double-under-
score in conjunction with printer codes to
change the double underline sign from
“="to “(* and “)”. I will make those
available upon request free of charge.

You will also note that it will let you
change fonts on the fly. I was not sure how
well the printer would work with the Model
4,but I have done a set of financial reports
and several letters quite easily.

Thehard part is setting up the Superscripsit
as Imentioned before. I wanted to confirm
my findings with you and pass on the good
news. TMQ and, of course, yourself, have
been worlds of help tome and I figure lowe
something back.

Anyone interested in the above can con-
tact me and I can point them in the right
direction. From a professional standpoint,
Ineeded the ability to double underline the
financial reports that I issue. It seems I
have found a way to be as technologically
proficient as the MSDOS crowd!

]
External Jumbo

Fm MISOSYS, Inc: We had a query
concerning the usefulness of the external
drive kit for the Colorado Memory Sys-
tems tape drives (DJ10 and DJ20). The
external kit which we provide as item R-
TD-K10 includes the external adaptor for
the drive. This is a small board which uses
one rear mounting but does not use a slot
(i.e. it needs nothing from the main board
bus). The adaptor board is available sepa-
rately as part R-TD-Al1l.

There are two reasons for using the exter-
nal adaptor: one is to move a single drive
between two or more computers, each of
which has the adaptor card; and the other
is where you have no free 5.25" (or 3.5")
mounting or floppy port available.

To move a tape drive between two ma-
chines, order one drive, one external kit,
and one AB11 adaptor. Consider a few
tapes as well - the 60 foot tapes are used
with software compression to get the 120M/
250M capacity.

Alternatively, for external use exclusively,
one should give thought to using the
Trakker; thisis ColoradoMemory System’s
tape device which connects up to the PC’s
standard parallel printer port.

|
LB/LB86 Print Bug

Fm MISOSYS, Inc. Wilbert Hannes re-
ported a problem when attempting to print
labels on a three-across grid simulta-
neously with three copies of each label.
LB users are aware that with a single label
print definition, you can request printing
more than one copy of a label, or print on
more than one label across. You can even
specify both printing operations for the
same print run.

‘When youprintlabels across a page (some-
times refered to as two-up or three-up)
with but one image of each label, LB will
print across the page for as many labels as
you specify. If on the other hand, you
specify one label across but more than one
image of each label, LB will printa single
image of each label, then re-print another
set of labels for as many copies as you
requested.)

But if you specify both actions simulta-
neously, LB uses a separate print algo-
rithm to print multiple copies sequentially
with the labels across the page. This type
of printing is the only specification which
uses the particular algorithm. I cannot
explain why it was designed that way as it
was in the original LB 1.0 implementa-
tion. But a bug was introduced into the
coding of the algorithm during the devel-
opment of one of the 2.x upgrades.

In order to fix the bug, it was necessary to
re-compile the MS-DOS version LB1.EXE
module (or the LB/OV1 LS-DOS version
module). If you have aneed to do thiskind
of printing, you may return the disk which
contains the LB1 file (should be disk 2 of
2) to obtain a corrected version.

Letters to MISOSYS

Letters to MISOSYS

Volume VLiii

THE MISOSYS QUARTERLY - Summer 1993

VYolume VII.ii

PINEMOVE

Or how to re-order an indexed file with the least number of moves

by Roy Soltoff

Computers were originally designed to
manage numeric calculations - the first
being designed to aid in census data sum-
marization. But for quite a few years, it
seems that the manipulation of textual
data has been the primary deployment of
computers. Backin the Winter 89/90issue
of The MISOSYS Quarterly (Volume IV,
Issueii),I posted theresultsof a poll Icame
across which revealed that 98% of the
preferred applications of PC users were in
the areas of spreadsheet (numbers) and
word processing (textual). 90% of users
employed computers for database man-
agement (mostly textual), 84% for desk-
top publishing (textual again), and so forth.

With the solid emphasis on the manipula-
tion of textual data, datasorting isa widely
used operation. Sorting can also take a
good deal of the computer resources - not
so much because of the CPU power re-
quired for sorting, but for the time in-
volved in shuffling data into and out of the
computer’s memory so string compari-
sons can be made. There are also many
different sorting techniques, no one of
which is the optimum for all given collec-
tions of data. Thus, employing the proper
sorting algorithm should be done after a
careful analysis of the organization of the
data to be sorted. ;

Most of us, though, do not bother to write
our own sort algorithms. We either use a
sort function supplied by the hostenviron-
ment or adapt one found in a book to the
environment we are using for our program
which requires the sorting of data.

Whatever sortalgorithm isultimately cho-
sen, there are only two distinct flavors
used in adapting the sort algorithm to the

want to simply create an ordered index to
the data set? Then again, just what do I
mean by an ordered index?

Let me illustrate this by an example. Sup-
pose you had a simplified set of data which
consisted of five records, each containing
surnames:

Smith
Jones
Lee
Adams
Clinton

If such a list of records were placed (or-
dered) alphabetically, it would appear as
follows:

Adams
Clinton
Jones
Lee
Smith

Itdoes not matter what sort algorithm was
used to resequence the data; what matters
is that now the data can be accessed se-
quentially in alphabetical order.

Butsuppose youdid not want to change the
physical sequence of the data? How could
you achieve the same results (i.e. accessi-
bility of the data in alphabetical order)
without physically resequencing the data?
Here’s one such technique. Establish a
secondary file which references the physi-
cal record numbers of the original set of
data. This data set would now appear
grouped as follows; for the purpose of this
simplistic set of data, I'll just use a base
index of 1.

3 Lee
4 Adams
5 Clinton

Thus, Smith is the firstrecord; Jonesis the
second record, etc. Now before we can
access any of the actual records of sur-
names, we have to first access the list of
references. Whatever sort algorithm we
employ toresequence the surnames alpha-
betically needs to be coded to alter not the
sequence of the surnames, but the se-
quence of the reference numbers. Just like
you refer to an index in the back of a book,
the reference numbers become an index to-
the actual data. Let’s look at the alphabeti-
cally-ordered data set whenthe index num-
bers are used.

Smith
Jones
Lee
Adams
Clinton -

- W N WK A

Well the set of index numbersdoesn’tlook
ordered; however, theindex numbers taken
in sequence now reference the data in a
correctalphabetical sequence. Forinstance,
if you want to print off the list, youread the
first index number which is “4”, This tells
you that the first record is record 4,
“Adams”. The second record alphabeti-
cally is determined by the value of the
second entry in the reference index; “5”
points to “Clinton”. Essentially, each
record from 1 to n is addressed by
RECORD[INDEX[J]]. Okay,sowhathave
you gained? In this illustration, you have
burdened yourself with having to read an
extra piece of databefore youcan getat the
data you want. True! In this short list, the
payoff is not evident. But suppose your
data set contained not just five records,
each containing but a single surname, but
thecomplete personnel dataonevery postal
employee in the United States - that’s
about 800,000 records - each record of
considerable size. Even with a small data
set of ten thousand records - which fit very
comfortably on a small micro, the time
involved in data I/O for sorting purposes

intended application. The questionis asked, 1 Smith can become significant - more than step-
Do I want to resequence the data? Ordo I 2 Jones ping out for that cup of coffee. The use of
Inside TMQ -10 - Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

accessing data by means of an index can
save considerable time when you have to
re-sequence the data. And for most bases
of data, data entry of new records and
deletion of outdated records is a continu-
ing process - one which requires the reor-
dering of the record sequence for access. If
you have less than 65536 records, you can
even get by with an integer-sized index
reference file.

Now thatI have sold you on the usefulness
of keeping data organized by using an
index file, I mustthen expose you toone of
the problems which can arise. Sooner or
later, you will come up with a reason for
wanting the data physically re-ordered.
With the desired sequence stored in your
index file, what technique can you employ
to move all the records around? Obvi-
ously, the operation isa moving operation.
Here’s where I am finally getting around
to the meat of the topic.

Many moons ago I worked for AT&T
Long Lines in the microwave radio fre-
quency interference group. The function
of this group was to study the impact of
proposed microwave routes (then used for
long distance telephone and private line
communications) on existing AT&T mi-
crowaverepeater stations. Part of the work
involved connecting together a sequence
of topographic maps to examine the to-
pography over the line of sight transmis-
sion route, noting the evidence of objects
or terrain which could interfere with the
proper transmission and reception of the
microwave signal. Essentially, an eleva-
tion profile was developed and fed into a
computer program which calculated the
signal loss caused by the distance between

_ the repeaters and the terrain profile. An-
other program was also used which ana-
lyzed all other microwave communica-
tions in the same frequency band which
then calculated the level of competing
signals reaching the repeater’s antenna.
The work was done to gain evidence in
case a proposed transmitter would inter-
fere with the reception of an existing sta-
tion requiring a protest of the FCC appli-
cation, or to plan a new route.

IBM 360 computers were used in a time
sharing environment to access the data
and programs. At the time, the particular
time share system used was MUSIC, which
stood for McGill University System for
Interactive Computing. All of our pro-
grams were coded inFORTRAN, which is
where I started out with my programming
endeavors. Now IBM was never known for
the quickest sorting implementations. Frus-
tration with IBM’s sort is probably what
spawned many competing firms which
specialized in mainframe sort implemen-
tations. Whether or not it was frustration
orcuriosity, there wasa fellow by the name
of Guy Ohlingerin the other District of our
Division who began toimplementhisown
sort routine which he called SRTMRK -
short for SORT MARK (FORTRAN lim-
ited sup-program names to six characters
at the time). SRTMRK was able to sort all
FORTRAN datatypes-and I believefaster
than the supplied mainframe sort utility. I
recollectthat Guy eventually re-codeditin
360assembly and convinced the Account-
ing Department (back then, it was the
Accounting Departments which had con-
trol of all computer installations) to install
his SRTMRK as acompany-wide resource.
I am sure that was a tough sell since when
did Accounting ever listen to Engineer-
ing?

SRTMRK was so-called because it did not
re-sequence the data, but rather marked
the data’s ordered position in an index
array. This is where you typically gain
speed, not having to reshuffle all the data.
Well since the need always arises thatdata
some times needs to be physically re-
arranged, Guy also did another imple-
mentation of his SRTMRK which option-
ally re-arranged the data; this one was
called SRTREA - short for SORT and
REARRANGE. The re-arranging func-
tion used a technique which he called a
ring move. I have never seen that term
used in any textbook; however, it is a very
elegant method of re-arranging an in-
dexed sequence of data always guarantee-
ing the minimum amount of disk I/O.
Let’s look at that concept.

Given a set of data records whose ordered

sequence is known, the optimum algo-
rithm for re-arranging the data to the
desired sequence is onein whichnorecord
is read or written more than once, and for
which no record already in its proper
position (by coincidence) is read at all.
Thering movealgorithm essentially treats
the set of data and its corresponding index
array asalinkedlistof disconnectedrecord
chains. At any record position, the algo-
rithm needs to know simply what record
goes into this position?

I have employed the ring move in two of
my products. The oldest implementation
was written in C as part of the PSORT
utility which isincluded with PRO-WAM.
The more recentimplementation wasdone
using assembler as a part of the HDPACK
disk defragger. In the latter case, you
really want to minimize the number of
accesses to the disk in order to re-arrange
the fragments of files throughout the disk.
HDPACK actually sorts the disk files ac-
cording to their hash index table entry
numbers and their granule offsets consid-
ered relative to drive itself (i.e. more akin
to the cluster number used in the directory
structure of an MS-DOS disk). The or-
dered sequencing is performed using a
shell sort, then the actual disk granules are
re-ordered using a ring move. Using such
amove, no disk granule is read or written
more than once (i.e. one read, and one
write).

PSORT uses a ring move to re-order the
actual records of the targeted data file.
Since PRO-WAM does not employ in-
dexes to files but accesses files purely
sequential, an external sort utility - suchas
PSORT - must re-sequence the data
records. It is faster for PSORT to sort the
records using an index, then re-sequence
the records but once using the ring move.

Since this issue continues discussion of
the C language, I thoughtit appropriate to
illustrate a ring move implementation us-
ing PSORT. Besides, it is easier to follow
an algorithm illustrated in a high-level
language from the same algorithm illus-
trated in a low-level language. It calls to
mind a lesson back in the early 60’s when

Inside TMQ

-11 -

Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

we (the class) were learning to code a
hypothetical binary computer called
HYPOVAC. This had about eleven in-
structions, all coded using a single 8-bit
byte toaccess the instructionsand memory.
I recollect that the machine had perhaps
but a handful of instructions: STORE,
LOAD, ADD, CPL, etc. In any event, we
were given a program listing and were
asked what the program accomplished. It
generated the first n entries in the list of
prime numbers by striking outevery other,
then every third, then every fourth, and so
forth. But figuring that out was not intu-
itively obvious as the extremely low-level
coding masked the actual algorithm. But
back to the ring move algorithm.

PSORT was designedto sort various PRO-
WAM data files - each of which had a
different organization. Thus, the first full
disk record of nearly all of PRO-WAM'’s
data files (those sortable by PSORT) con-
tain header data which provides PSORT
withinformation on the record size, where
the key field(s) to sort are located within
therecord, the size of the key field, and the
type of the field: string or integer. This
article does not attempt to cover the entire
PSORT utility program, although the en-
tire program is illustrated. I want to con-
centrate solely on the ring move algo-
rithm. Suffice to say that the first portion
of PSORTreads and validates thekey field
data contained in the header record.
PSORT then allocates memory for two file
buffers, an index array, and arrays for
pointers to the key field data and the key
data itself. The index arrays are used
during the sorting process to keep the data
position intact and use an index array to
maintain the re-ordered sequence.

Aninitialization routine then prepares the
index arrays. In particular, the array of
index numbers used in the ringmove algo-
rithm is initially filled with the numeric
sequence 1, 2, 3,... by the code:

for(i=0; i < nrec; i++)
{
psub([i] = i;
}

Inside TMQ -12 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

The keys are then read into the allocated
memory by the readkeys() function. The
keys are then ordered by the shellQ sort
function with the psub array containing
the resulting sorted order. Note that dur-
ing the sort, the keys are addressed by a
notation of the form, v[index[3j]].
This is identical to the record access men-
tioned previously in our surname example.

The ringmove algorithm then works as
follows:

66399

The variable “i” is used as a subscript
of the index array - the array which
holds the ordered sequence of the
data. This is set to zero to start with
the first position as C uses a base of 0
for all arrays. The variable “next” is
used to keep track of the value of “i”
when a chain of linked records is
broken. The meaning of broken is
really acondition of FALSEinstep 3.
“next” is also initialized to zero.

2.while (i <nrec) {}

The variable “nrec” containsthe quan-
tity of records. The algorithm must
proceed to examine all records in
turn; the completion is noted when
the subscriptreaches the highest num-
bered record.

3.if (index[i] ==1i || index[i]
== -1)

{

++1i;

++next;

continue;

}

-To use the ringmove algorithm, you
must provide a method to be able to
ascertainan instance of arecord which
hasbeen moved into place. Animple-
mentation of ringmove isnotbound to
any particular method; rather it is the
whim of the designer. In this imple-
mentation, I chose to use an index
value of “-1” to indicate a record
which has already been moved into

Inside TMQ A - -13 - Inside TMQ

Volume VL.iii

THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

the correct position. Therefore, this
block of code steps through the index
array examining (1) if a record is
coincidentally in the correct position
and does not need to be moved, or (2)
has already been moved. If either
situation is TRUE, the subscript (and
the next tracker) are incremented and
the algorithm continues with step 2 -
the outer while loop. If neither are
TRUE, then a record needs to be
moved; the algorithm proceeds to step
4,

4, readrec(i,buf2,1rl);
link=index[i]; index[i]=-1;

Thereadrec() functionreadstherecord
referenced by the first argument. The
record is read into the buffer identi-
fied by the second argument. So note
that here we are reading the ith record
which isnotthe record which belongs
at this position but the record at this
position. Toclarify this, lets look back
at our simplified case of surnames.
Step 3 would find that neither the
record is in place or the end of a chain
is reached; thus, step 4 would be
exercised with i equal to 0. The
“Smith” record would be read into
buffer 2. The record linking to this
position would be the record which
belongs here or the record pointed to
by the index (index [1]). Step S is
then exercised.

S.while ((index[link]) != -1)

{

readrec(link,bufl,1lrl);
writerec(i,bufl,lrl);
index[i] = -1;

i

= link;

link = index(i]:

}

In this step of the ringmove, the code
block traverses the records which are
linked together until the end of the
chain is reached (i.e. the completion
code of -1 is found). The “while” tests
for that condition.

The code block reads a linked record

Inside TMQ

- 14 -

Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

into buffer 1. In our surname ex-
ample, that would first be the fourth
record, “Adams”; 4 being the value of
index[0]. Buffer 1 now has the record
which should be in position i (i=0).
That record is written to its proper
place, the index value is changed to
the completion code, the index “i” is
changed to the link value (4), and a
new link is ascertained by the index
value at index[4]. The new link is 3.
Why “3” you may ask? Well since we
have justmoved “Adam” toitscorrect
position, we need to read the record
which belongs to the position just
vacated by “Adam”, That’s record 3!

The nexttime through the code block,
record 3 (“Lee”) is read, written to
position4, theindex at4 ischanged to
the completion code, the subscript is
changed to 3, the link is changed to 2.
The while tests index[2] and findsa 5
- nothing to terminate the block so the
code block is re-executed.

The next time through the block, we
read Jones from 2 and write Jones to
3, designate position 3 as complete,
change the subscript to 2 and the link
to 5. Once more through the code
block.

The next time through, we read
Clinton from 5 and write Clinton to 2,
show index[5] as complete, change
the subscript to 5 and the link to
index([5] which is equal to 1. The
while now tests index[link] and finds
that it is equal to -1, a completion
code. Therefore, the while terminates
its code block. Proceed to step 6.

6. writerec(i,buf2,1lrl); i =
next;

The record we originally read into
buffer2 isnow written into position 5,
the current value of the subscript. The
subscript is now changed to the value
of nextand the code execution contin-
ues at the original while test in step 2.
From there, the code in step 3 finds
thatall records have been moved. The

Inside TMQ -15 - Inside TMQ

Volume VLiii

THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

use of next ensures that all discon-
nected record chains are dealt with.

Note that every record was read but once,
and written but once. This satisfies the
requirement of optimality.

As a final submision to the subject matter
of sorting, I am reprinting an updated
version of my SEESHELL program which
was useful for visually demonstrating the
underlying behavior of the shell sort.
SEESHELL first appeared in NOTES
FROMMISOSYS,Issue3, July 1984. The
program used video memory as the data
memory - each memory address contained
a character of data. Thus the progress of
the sort could be observed simply by look-
ing at the screen.

SEESHELL was originally written to be
compiledby LCorPRO-LC. Since my MC
compiler has been out for many years, I
decided to bring SEESHELL up to date by
changing some of its structure for MC’s
use, and to allow direct compilation for
either Model III or Model 4 targets.
SEESHELL accesses video memory di-
rectly which requires that HIGHS be be-
low X’F400'. As such, the code incorpo-
rates testing for a usable value of the
Model 4 high memory pointer to ensure
that your computer does not crash.

Note that SEESHELL uses a single preci-
sion floating point function, frnd(), which
requires use of the “+f’ compiler option.
The companion DISK NOTES to this
issue contains the program source as well
as the Job Control Language file used to
compile SEESHELL.

/A

Inside TMQ

-16 -

Inside TMQ

Volume V1iii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

Inside TMQ@ -17 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

Inside TMQ -18 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

Some older disk directory repair utilities
such as PFIX/CMD from the Toolbox for

LDOS 5 and Toolbelt for LS-DOS 6 by UDEAT/CMD VYer. 2.0

Powersoft (both now sold by MISOSYS)
are unable to correctly repair the GAT ;

sector found on LDOS 5.3.x and LS-DOS By Scott Toenniessen 1991
6.3.x type disks. This occurs because
beginning with LS-DOS 6.3.0, the previ-
ously unused bit 3 of byte CDh in the GAT
sector was assigned to indicate whether or
nota disk used the new or old style dating.
When this bit is set, 6.3 style dating is
assumed, when it is reset, pre-6.3 style
dating is indicated.

Older versions of directory repair utilities
(specifically PFIX/CMD) reset this bit
when repairing a disk, even on 6.3 style
disks. This causes LS-DOS 6.3.x to think
it is reading an old date style disk and
causes it to omit the time stamp and incor-
rectly interpret the date stamp when using
the DIR command. Running DATECONV
sets the bit to 1, but since the dates were
already in the 6.3.x format, they are
scrambled and the time fields are set to
12:00.

This is where UPGAT/CMD comes in.
This Model 1/3/4 program simply sets
GAT+CDh bit3 to 1. Thisallows LDOS/
LS-DOS to correctly recognize the dating
style used on the disk.

Operation: After a directory repair opera-
tion which corrects a corrupted GAT sec-
tor (PFIX :D,G would do that), simply

type:
UPGAT :d

where d is the drive number. The colon
may be omitted. Optionally, the command:

UPGAT :d (old)

may be executed where old indicates that
pre-6.3.x style dating is used. This option
is included in case the program is ever
used on an earlier LDOS/L.S-DOS disk by
mistake.

Comments: Inmy experience with PFIX6/
CMD, I only need to run UPGAT after

Inside TMQ -19 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

Inside TMQ -20 - Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

PC DMA Transfer

or

How to work around DMA buffer
origins from a high-level language

by Roy Soltoff

Anyone who has programmed a PC at a
low level for any number of years may
have come upon one problem unique to
Direct Memory Access (DMA). Material
has already appeared in The MISOSYS
Quarterly concerning the use of DMA on
the Model 4 equipped with an XLR8er
card (see The Final Solution to the XLR8er
Question issue VLi; How to Roll Your
Own on the XLR8er, issue V.iv). This
article will therefore present only a spe-
cific difficulty when using DMA on aPC
(i.e. x86-based computer).

The dominate x86-architecture chip cur-
rently is probably the Intel 486. This chip
with 32 address lines, can access gigabytes
of memory; however, if one is using MS-
DOS as the operating system, the CPU
architecture reverts to the 8086 memory
structure with 20 address lines capable of
directly addressing 1 megabyte of RAM.
The utilization of the 1 megabyte was
defined by IBM when their first PC was
being designed. This memory structure
provided the first 640 kilobytes for user
memory, with the rest of addressable
‘memory used for video memory and the
Basic Input Output System (BIOS).
Memory banking schemes no different
than that used on the TRS-80 Model 4
provide a means of access to additional
memory. However, for the purposes of
program execution, they must run within
the 640K region.

Although this appears like a large amount
of memory, it is not. As all systems grow,

Mostly anyone who has puttered in the
MS-DOS arena knows that the memory
region is not really a linear address space
when any x86-architecture CPU is being
operated in its 8086 mode. When the 16-
bit CPUs first arrived after the 8080, Z80,
6803, 6800, etc. chips, there were three
major manufacturers - each with a chip
designed under a different memory archi-
tecture. Some folks say that Motorola,
with its purely linearly addressed 68000
hadthe bestdesign. Apple seemed to think
s0. So did the workstation designers who
used that chip to design Unix-based ma-
chines. Zilog had a Z8000 chip, intended
to capitalize on their success with the Z80.
The Z8000 used a segmented memory
design with a 64K segment; the segments
were addressed on 64K boundaries. Thus
an absolute address could be generated by
using a segment register to address high-
order memory lines with the program
counter addressing the address within the
64K segment. Intel also designed their
8088 and 8086 chip with a segmented
architecture using 64K segments; how-
ever, unlike the Zilog chip, Intel’s used a
segment origin every 16 bytes. There’s
segment registers whose contents must be
shifted by 4 bits then added to the program
counter address (referenced as a segment
offset) in order to present a 20-bit address
to the CPU bus. This certainly appears to
beaMickey Mouse scheme. The one thing
which Intel had going for them was their
creation of a low-cost 8088 CPU which
had but an 8-bit internal bus and the 20
address lines. This was cheaper than the

According to most text’s covering the
design of IBM’s PC, the lower cost factor
of the 8088 was a primary reason behind
their choice of the Intel chip. The rest is
history; IBM’s selection with a resultant
industry built around IBM’s choice made
Intel’s the chip of choice. The Z8000 fell
by the way side. Motorola still maintained
a presence with Apple’s use of the 68000
for the Macintosh, and the workstation
crowd building Unix boxes around the
68000. Also, as Intel created the 80286,
80386, and 80486, Motorola continued
with the 68020, 68030, and 68040.

Let’s briefly review the memory
addressability of the Intel 8086 CPU fam-
ily. These processors use a 20-bit address
bus; thus, addressable memory is from
absolute address X’00000' through
X’FFFFF’ - a total of 1,048,576 bytes.

Since the 8086 incorporates only 16-bit
registers, memory space is accessed using
a segmented memory scheme. The entire
1 Megabyte address space is divided into
65536 segments numbered from X’0000'
through X’FFFF’. Each segmentbeginsat
a 16-byte boundary starting from address
X’0000'. The following table illustrates
the first few and last few segment ad-
dresses mapped into the one megabyte

absolute address space.

Segment Number Address Origin
X’ 0000° X’00000*
Xr0001' X’00010"
Xr0002' X700020!
X!'FFFD’ X'FFFDO!
X'FFFE’ X'FFFEQ'
X' FFFF’ X'FFFFO!

An absolute address is constructed by add-
ing an offset, also contained in a 16-bit
register, to the address origin of a segment
number (not the segment number itself).
In actuality, since the segment is con-
tained in a 16-bit register, the CPU inter-
nally shifts the segment number left by
four bits then adds the offset value. This
produces a 20-bit result - the absolute
address.

we soon exceed our limits. 8086 with an internal 16-bit bus as well as
cheaper than the 68000 and Zilog Z8000. Since the segment offset is also a 16-bit
Inside TMQ -21 - Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILii

value, it is a number between X’0000' and
X’FFFF’. Obviously, when the segment is
X’FFFF’, an offset greater than X’000F’
would be invalid since the address arith-
metic algorithm justdiscussed would over-
flow a 20-bit value. Likewise, an offset
value greater than X’7FFF’ could not be
used witha segment value of X’F800'. The
8086 CPU does not treat these conditions
as errors but resolves the result to an
address within its addressable range; thus;
they would wrap past X'FFFFF’ to
X’00000'. It is a quirk that the 80286 had
a error in its design structure such that
when operating in 8086-mode, the ad-
dress overflow would not wrap but actu-

ally result in an address above the 1 mega-

byte region. Extended memory managers
have made use of this fact.

Because the segmented architecture refer-
ences segment origins at 16-byte bound-
aries, another term has been used when
discussing 8086 memory space. Thatterm
is a “paragraph”. A paragraph is any 16-
bytes of memory which begins ata 16-byte
boundary. There are, therefore, 65536
paragraphs of memory. Thus, a segment
may be considered to originate at every
paragraph.

Because PC addresses use a summation of
a shifted segment with an offset, there are
many different combinations of segment
and offset which produce identical 20-bit
addresses! As a matter of fact, there must
be 4K of combinations which produce any
given 20-bit address. Let’s look at an
example to resolve and understand this.
Address X’00040' can be referenced by
any of five combinations of segment and
offset (generally written as
“segment:offset’).

0000:0040
0001:0030
0002:0020
0003:0010
0004:0000

These may look oversimplified, so per-
haps another example may illustrate the
nature of segment:offset summations. The
address X’6789A’ can be generated from

these handful of segment:offset values (as
well as many other combinations:

6000:789A
6001:788A
SFE2:7A7A

In other words, since the segment value is
shifted left by four bits prior to adding, a
change of one in the segment value could
be counterbalanced by an opposite change
of 16 in the offset value and still sum to the
same machine address.

Onceanaddressis greater than 0000:FFFF,
it can generally be realized using any of
16K combinations. In an actual 8088 or
8086, since addresses above X'FFFFF’
wrap around to 0, any address can be
realized via any of 16K combinations -
even the first 64K of memory.

So why bring up all this history and ad-
dressing schemes? Well one reason has to
do with the DMA chip used in the PC, and
the meansof programming it. You see that
although the 8086 family of CPUs use a
segmented architecture on paragraph
boundaries (that’s the term applied to the
16-byte segment address), the DMA chip
handles a maximum of 64K at a time but
the memory references must be on 64K
boundaries!

The original PC used an Intel 8237A
DMA controller. The address registers in
this device are 16-bits wide; thus, the
device can handle at most a transfer of
64K. However, PC design uses a twenty-
bit address to select any byte in the one
megabyte address space. For the purpose
of transferring a twenty-bit address to the
DMA controller and associated hardware,
the PC provides a page register for speci-
fying the upper four-bits of the twenty-bit
address, and an address register for speci-
fying the lower sixteen-bits of the twenty-
bit address. The page register controls the
64K block of memory to be referenced in
the DMA transfer while the address regis-
ter passes an address within that 64K
block to the DMA chip. Both of these
registers are port mapped. This scheme is
moreakin to the segmented architecture of

the Z8000 than that used in the x86 chips.

Enter DOS Memory Allocation

MS-DOS provides three service callsdeal-
ing with memory allocation which can be
used by the programmer at a low-level:
Allocate Memory - function call 48H; Free
Allocated Memory - Function Call 49H;
and Modify Allocated Memory Blocks -
function call 4AH. The latter is used to
grow or shrink the size of a memory block
previously allocated. With these functions,
the sense of memory block refers to a
specified number of paragraphs; memory
is allocated to a program in paragraphs -
multiples of sixteen bytes. That is also to
say that every memory allocation is pro-
vided on a paragraph boundary. Since a
segment address is coincident with para-
graph boundaries, every memory alloca-
tion can also be considered the start of a
64K segment.

Not every program running under MS-
DOS is big - although at timesit seems that
way. If a given program requires less than
64K of data space, every data item can be
stored in a single 64K of space referenced
by a single segment address - only the
offset need be unique. When a program
needs a data space in excess of 64K, each
dataitem referenced must be resolved by a
possibly unique segment address and an
offset address. Thus, 32 bits are needed to
resolve all data addresses. Because of this,
a program with a data space larger than
64K will run slightly slower than an iden-
tical one with less than 64K of data. The
same is true for the program size; pro-
grams larger than 64K require 32-bitreso-
lution for function calls.

Mostprograms for MS-DOS are written in
a high-level language, C is typically the
language of choice for commercial soft-
ware; however for Windows, Visual BA-
SIC is making some inroads. It is advan-
tageous to be able to tell a compiler thata
given program is to use nothing more than
64K of data space. This is done by pre-
declaring a memory model for the pro-
gram, The Microsoft C compiler provides
six memory models which can be pre-

Inside TMQ

-292 -

Inside TMQ

Volume VI1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

declared. These are:

both code and data lim-
ited to a single 64K re-
gion.

tiny

code and data are lim-
itedto64Kregionseach.

small

data is limited to 64K
but code is unlimited.

medium

code is limited to 64K
but data is unlimited.

compact

neither code nor data is
limited but individual
arrays are limited to
64K.

large

huge same as large but indi-
vidualarrayscanexceed

64K.

If we consider but the first three models,
all data addressing is within a single 64K
block of memory. This means that the
same segment address will be used for the
access of all data - only the offset will be
different. As previously shown, the seg-
ment origin will be a paragraph boundary
withaonein 16K chance of being ata64K

boundary.

Now look at DMA operation

A DMA controller generally supports two
types of data transfer: memory-to-memory,
ormemory to/fromI/O device. In brief, the
DMA chip is passed a base address and a
word count - along with other specifica-
tions as to the type of transfer. Assuming
data from an I/O device (such as a floppy
data channel) is being read into memory,
a byte is transferred to memory, the word
count is decremented, and the address is
incremented. This sequence will continue
until the word count “rolls over” from
X’0000' to X’FFFF’. R

What would happen if an attempt was
made to transfer 16K of data when the
machine address origin was 46A0:2603?
An offset of X’2603' looks harmless

enough. However, this calculates to a
machine address of X’4EQ03. This ma-
chine address value would require a page
address of X’4' and a base address of
X'E003'. After a transfer of one byte, the
base address would be X’E004' with a
count of X’3FFF’. After the transfer of
8189 bytes, the base address would be
X'FFFF’. The next byte transferred would
cause the address to wrap to X’0000'. Thus
before even 8K was transferred, the base
address would wrap from X’0000' and
another almost 8K of bytes would be trans-
ferred not to where you thought would be,
but to some other area overwriting other
data or program code. This is called a
DMA boundary error!

DMA was used in the original IBMPC to
transfer data to and from the floppy disk
controller. The Floppy Disk Controller
(FDC) chip used in the PC allows multi-
sector I/O. The BIOS also supports the
ability to read or write more than one
sector of data with a single service call.
Allowing the FDC to handle multiple
sector /O can definitely speed up the
transfer when you want to sequentially
transfer more than one sector - such as in
a track read or write operation.

A floppy disk sector underMS-DOS is 512
bytes. A 360K floppy has nine sectors per
track - or 4.25K. Since the BIOS allows
multiple sector transfers using a multi-
sector memory buffer, the location of such
a buffer must be entirely within the first
59.75K of a segment whose address is on
a 64K boundary. An attempt to use DMA
to transfer even a larger block of data
would impose a greater restriction on the
actual location of the memory buffer. To
guard against DMA boundary errors asso-
ciated with floppy I/O, the original IBM
PC BIOS tested the resolved machine
memory address to ensure that the buffer
region remaining in the 64K-bounded
segment block was as large as the number
of bytes to be transferred. If the available
memory was too small, the BIOS returned
an “Attempt to DMA across 64K boundary”
error and aborted the floppy I/O request.

I’'m sure that this problem caused much

consternation for a few years. Eventually,
the programmers who wrote the BIOS
code decided to have the BIOS break a
transfer request which traversed a 64K
boundary into multiple transfers automati-
cally setting the proper values into the
DMA registers; however, anyone directly
programming the DMA chip would have
to ensure that an overrun condition would
not prevail. But to this day, there are still
machines with a BIOS whose FDC DMA
initilization code cannot handle a request
which would traverse a 64K boundary;
they will return a DMA boundary error.

Now enter high level language

I typically do not get involved with much
low-level programming on the PC. But it
does happen. Ever since MISOSYS ac-
quired the Powersoft product line, we have
duplicated TRSCROSS on a Mountain
3200 duplicator. This is a 5.25 inch drive
contained within an' apparatus using a
hopper mechanism to feed diskettes to the
drive under software control. Commands
can be sent to the device to drop the
engaged diskette intoone of two bins. abin
for good disks and a bin for bad diskettes.
The commands and duplicator status are
accessed via a serial port; the floppy drive
is accessed via a standard 34-pin floppy
bus. The duplicator is therefore connect-
able to either a TRS-80 or a PC. And in
fact, it is used with both computer types.

Powersoft used the Mountain 3200 for
duplicating their TRS-80 diskettes; it was,
in fact, Powersoft who wrote the TRS-80
duplicator code and licensed it to Moun-
tain. Powersoft also wrote a short assem-
bly language program to drive the duplica-
tor from a Tandy 1000 so they could use it
to duplicate TRSCROSS.

The PC BIOS provides floppy I/O service
calls in a nature similar to the TRS-80.
The FDC chip used in the PC is a little
smarter than the chip used in the TRS-80
as the PC’s chip handles the formatting
pattern directly. All you need to provide it
for formatting is a data table containing
essentially the head, sector, and track num-
bers. It doesn’t take a lot of code to write

Inside TMQ

-23-

Inside TMQ

Volume VL.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILii

a program which can format a disk, read
from a source disk, then write to the for-
matted destination disk. The BIOS code
can handle a large number of sectors trans-
ferred at one time (given the above atten-
tion to buffer origin relative to transfer
size) - but only on single sided media. The
BIOS does notautomatically reference the
second side when an attempt is made to
transfer more than a track of sectors; the
BIOS goes merrily along continuing with
the same side. MS-DOS diskette organi-
zationis akin to LDOS and LS-DOS for2-
sided media; asequence of sectors traverses
all like-numbered tracks of a cylinder
before stepping to the next higher-num-
bered cylinder. So fora2-sided floppy disk,
you can only transfer a track at a time.

I'suspect that because of this, and because
Powersoft did not need a lot of disk space
for the TRSCROSS program, they decided
to put it on single-sided media. Not only
that, they used a disk structure which was
prevalent on the first PCs - eight sectors
per track rather than the then current nine.
This all resulted in a quicker duplication
time. Speed was important, also because
the source diskette was a master floppy.
Unlike my use of hard drive based
diskDISK floppy diskette images to dupli-
cate my TRS-80 products directly from a
harddrive, reading the TRSCROSS source
from a floppy was slower to access the
source,

My problem was that I wanted to use the
Mountain for duplicating some of my MS-
DOS products - like LB86. The data base
requires a much larger diskette capacity
forreleasing the product; it just fits on two
360K diskettes.

Enter 2FILE and 2FLOPPY

The March 1991 issue of PC Magazine
contained a pair of utilities written by
Stephen D. Cooper which could be useful
for assisting in the modem transfer of a
floppy disk, orin easily duplicating floppy
disks on a one-floppy machine. One pro-
gram, called 2FILE, read a floppy disk,
detected its configuration, and created a
file image - including a configuration

header - of the floppy onto a hard drive.
Thecompanion program,2FLOPPY,read
the image from the hard drive, set up the
DOS to configure the drive according to
the configuration of the original floppy,
then formatted a new diskette and copied
the image to the new disk. The pair of
utilities was written in C; source was
available for download from PC Magnet -
the PC Magazine forum on CompuServe.

Iobtained the utilities back when they first
came out, and had used them for about a
year duplicating small numbers of MS-
DOS disks - my MS-DOS business never
quite grew to the point of needing a dupli-
cator. However, with an optimistic view of
LB86 sales, and the Mountain 3200 avail-
able, Iproceeded tore-write the 2FLOPPY
code to access the Mountain 3200. All I
had expected to have to do was to provide
the serial port access to control the dupli-
cator and obtain its status. Or so I thought!

The 2FLOPPY code always masked the
BIOS error and provided its own error.
Thus, whenever I got an error such as
destination diskwrite error, I neverknew
why until I got down into the code and
debugged it with CodeView. It was then
that I discovered that the errors were the
DMA boundary errors. The difficulty in
debugging came aboutbecause thememory
environment changed whenever I ran the
program from CodeView relative to run-
ning the program from the DOS prompt.
Asyouseenow, theerror would occur only
when the program’s data segment origin
was such that the allocated floppy I/O
buffer crossed a 64K boundary. Believe
me, itisdifficult to debug a program which
always works when you are debugging it
butalways bombs when you are running it
normally. The program’s behavior also
changed when run on different machines
- partly caused by the loading of different
TSR modules in a particular machines
configuration which resulted in different
memory origins for the 2FLOPPY program.

To solve the problem on a permanent basis
meant that I had to do one of two things.

1. Write a transfer function which

breaks a transfer requestinto two
requests when the memory block
isknowntotraversea 64K bound-

ary, or

2. Writeamemory allocation func-
tion which guaranteed to be to-
tally within a segment whose ori-
gin was a 64K boundary.

I chose to implement the latter function
which I named getbuff().

Memory allocation under Microsoft’s C
compiler - and probably every other C
compiler, allocatesrequestedmemory from
the heap starting from the bottom and
going to higher-numbered addresses.
There is no way to force the allocation of
alower-addressed block; however, there is
at least one technique which can force the
allocation of a higher-addressed block.

Consider the case where unfortunately,
the heap (i.e. the data space) starts within
2K of the end of a 64K-boundary block of
memory. If I attempt to allocate 4K for an
I/O buffer and use it for floppy I/O, I will
geta DMA boundary error. So whatI want
the getbuff() function to do, is to test the
memory region obtained for boundary in-
tegrity. If it cannot be used for the desired
purpose, free it up; allocate adummy block
of memory so that a subsequent allocation
will be origined at a higher address. Then
test the new block to see if it too cannot be
used. Repeat the de-allocation, allocate
dummy, allocate buffer sequence until ei-
ther no more memory is available, or until
the desired buffer is found. The former
unworkable situation could only occurifa
demand for greater than about 32K is
requested. That would not occur for the
2FLOPPY program.

One thing which 2FLOPPY does is re-
quireasecond I/O buffer toread back what
was written for comparison with the source
which was written. That is an additional
level of integrity which virtually guaran-
tees a flawless duplicated diskette. There-
fore, 2FLOPPY requires two identically
sized buffers.

Inside TMQ

-24 -

Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

Enter the C memory function

Lets start pulling apart the getbuff() func-
tion to see how it operates.

As mentioned, 2FLOPPY needs two buff-
ers. I therefore specified a global variable
dummy declared as an array of pointers to
char (i.e.char *dummy[2};). Whatispassed
to getbuff() as an argument, is the number
of the desired buffer. The size of the needed
buffer is also a global variable, buffsize.

Since getbuff() will be returning a pointer
to a memory block, and is passed an inte-
ger argument, it is declared as follows:

char * getbuff (num)
int num;

{

The function needs five variables: tempsize,
an unsigned int used to store the current
size of the dummy buffer allocation; buffer,
a pointer to char which holds the pointer
to the allocated memory block; segment
and offset, also unsigned ints used to hold
the 16-bit segment and 16-bit offset val-
ues; and address, a long integer which will
hold the full 20-bit resolved address.

Loops are used in just about every pro-
gram. C provides three forms of looping:
the for loop; the while loop; and the do-
while loop. In each case, some expression
determines a conclusion to the loop. Some-
times its useful to terminate a never-end-
ingloop by some particularcondition which
may be more difficult to code into the
normal loop termination-testing construct.
Insuchacase, you form a forever loop and
terminate its looping by a break or return
to the calling function. Forever loops can
be coded using a while construct with an
always true condition, such as while
(TRUE) {}. Butsince the word forever
has “for” as a syllable, it is sensible to
construct a forever loop using the for
construct as in: o

-for” (;7)
{

This particular for is devoid of initializa-

tion, test, and increment statements. The
subsequent for code block is the entire
code of the function. The first statement
attempts to obtain a memory block of the
needed size. Malloc() returns a NULL if
the requested size cannot be allocated;
getbuff() just returns this NULL to the
calling function to indicate the error con-
dition. '

if (! (buffer= (char *)
malloc(buffsize)))
return buffer:;

The 20-bit address is calculated in C code
with the same method as previously dis-
cussed. The segment value is shifted left
four bits then added to the offset address.
The FP_OFF and FP_SEG are macros
defined in Microsoft C and are used to
extract the offset and segment addresses
given a pointer. Since 2FLOPPY is com-
piled using a small memory model, the
buffer pointer needs to be cast to a far
pointer as required by the macros.

address = (offset = FP_OFF (
(char far*) buffer) + (FP_SEG(
(char far*)buffer)<<4)):

To determine whether the buffer obtained
traverses a 64K boundary, I simply strip
off the page value (the high 4-bits),add the
buffer size to the address, then see if the
value is less than 65535. If so, the buffer is
okay to use for the floppy I/O and I return
to the calling function with the buffer
pointer.

if (((address & OXFFFF) +
buffsize) < OxFFFF)
return buffer;

The alternative is an unusable buffer ad-
dress. So I free up the buffer, and any
previous dummy buffer which may have
been allocated:

free (buffer);
if (dummy [num])
free (dummy [num]) ;

Since I know that the offset was within a
buffer size of the boundary, I simply calcu-

late the difference between the offset ori-
ginand the boundary. This tempsize, which
when allocated, should guarantee that the
next allocation will provide a memory
originat the beginning of a 64K boundary.

tempsize = 0x10000 - offset;

With the dummy size calculated, Iallocate
that sized memory block. The test for a
valid allocation guards against the un-
known and unconsidered which is bound
to happen to every programmer.

if (! (dummy[num] = (char *)
malloc(tempsize)))
return buffer;

With the dummy block allocated, the clos-
ing brace of the forever code block is
reached, causing a repeat of the first state-
ment of the block.

With the getbuff() modifications made to
the 2FLOPPY program, I have not experi-
enced any further DMA boundary errors
while running the program on four differ-
ent machines with quite different runtime
memory configurations.

Function code source appears in its en-
tirety on page 18.

Inside TMQ

-925 -

Inside TMQ

Volume VI.iii

' THE MISOSYS QUARTERLY - Summer 1993

Yolume VILii

Cars,. ROMs and 102s

or
A Tandy 102 makes a good speedometer

by James Cameron
Digital Equipment Corporation (Australia) P/L
(cameronjames@snoc01.enet.dec.com)

This article first appeared in SYDTRUG
news. SYDTRUG is the Sydney TRS-80
User Group in Australia. Copywrite held
by James Cameron. Permission granted
to publishor distribute without significant
modification provided my name remains
on it.

Here is a good example of how to persuade
the Tandy 102 to do two things at once; in
this case monitor incoming pulses as well
asallow textediting and other programs to
run.

Hardware

The hardware is the sensor from a Tandy
overspeed alarm, which is connected be-
tween two halves of the speedometer cable
after cutting it. This provides one pulse for
every 0.7 metres of distance in my car.
Other hardware options are viable; for
instance the magnet and coil approach
used in the Electronics Australia January
1991 issue. Whatever the source; pulses
must find their way to the Tandy 102’s Bar
Code Reader port, which is anine pin “D”
socket on the left side. One of the pins of
this socket is connected to bit 3 of port
X'BB’, so by reading from this port, the
state of the pin can be determined.

Software

The software consists of two modules, a
machine language interrupt routine for
taking speed samples, and a BASIC pro-
gram for the userinterface. Therestofthis
article deals with the software.

Sampling

The sampling routine has gone through
three generations so far. These have been;

1. Count up to n pulses and return; the
speed is calculated by determining the
time taken tocount the n pulses. The value
n is varied according to the prior speed
sample; n is increased if the speed is
increased. Problem : no datais returned
if the car has stopped, so the display cannot
be updated.

2. Count the number of pulses received in
n 254ths of a second. Again, n is varied
according to the prior speed sample; n is
increased if the speed is decreased. Prob-
lem : distance measurements are difficult
and inaccurate.

3. Maintain an odometer, by providing an
interrupt routine that counts pulses and
increments the odometer accordingly. The
speed is calculated based on the odometer
change over time. The odometer is cali-
brated in pulses, and is 32 bits wide.

Ineeded to do alot of reverse-engineering
of the 102’s ROM, since I didn’t have any
reference material on entry points or fea-
tures. What I found of importance was
that there is a 254th second interrupt
routine vector that I could hook my own
program into. A three byte vector high in
memory normally containing a RET in-
struction needed to be replaced with a
jump instruction to my own routine.

The sampling program is in two parts; the
interrupt driven pulse detector, and the
BASIC interface routines. The pulse de-
tector gains control every 254th of a sec-
ond; it checks to see if the state of the
incoming data line has changed from on to
off, and if so, increments the odometer
value, which is only 16 bits wide at this
point.

The interface routines provide anumber of
functions;

a. start interrupt; installs the replacement
vector in high memory,

b. stop interrupt; restores the vector to a
RET instruction,

¢. clear odometer; resets both the interrupt
routine’s 16 bit odometer and the internal
32 bit value.

d. return odometer; returns the current
value of the odometer to the BASIC pro-
gram,

e. return odometer at next second; returns
the odometer value after waiting for the
internal clock to tick over to thenext whole
second.

User Interface

The BASIC program used for the user
interface has also evolved. Initially, it
displayed only the speed calculated as a
three digit number. Now it displays a
horizontal graph with calibration mark-
ings, along with a historic vertical graph
for the past 240 samples. Function keys
allow the sample period to be varied; just
for the fun of it. A shorter sample means
fasterresponse, butadecreaseinaccuracy.
The program also allows recording of the
current odometer setting in a text file for
later analysis or trip calculations.
Soundeffects are also emitted; with an
overspeed alarm setting available.

Inside TMQ

- 26 -

Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

Calibration

The frequency of the pulses is proportional
to the rotation speed of the rear axle or
speedocable. Atagivenroad velocity, the
frequency is also dependent on a number
of other factors;

a. how well inflated your tyres are,

b. the design of the sensor device,
(number of pulses per rotation),

¢. the circumference of your tyres,

d. therelative gearing between the
tyres and the sensor.

I found (d) to be the most difficult to
obtain, since I had no information apart
from actual trial and error. I found the
ratio in my instance to be 2:5, that is, for
every five speedo cable revolutions, two
tyre revolutions were observed.

Overall though, I took the accurate ap-
proach; count how many pulses are de-
tected in a measured kilometre. Pop out to
the Great Western Freeway between
Parramatta and Penrith, and watch for the
white measured kilometre signs; labelled
“mk” on a white background. [US readers
are encouraged to do thesame ;-) - JC]

Two listings follow. The first is the ma-
chine code for the hardware interface rou-
tines, and the second is the working proto-
type user interface program written in
BASIC.

Inside TMQ -27 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

Inside TMQ - 28 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

Inside TMQ - 29 - Inside TMQ@

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILii

The program is divided into a number of
sections;

Lines Purpose

1t02 Main Loop

8t040 Screeninterface subrou-
tine

200t0 910 Function key subrou-
tines

1000 to 1250 Initialisation subroutine

2000 onwards Development subrou-

tines, Reserve string
space and execute
initialisation routine.

0 CLEAR1024:GOSUB1000
Line 1 is the start of the main loop. The
program spends most of its time in this
loop obtaining speed samples and updat-
ing the screen.

Calculate the optimum revolutions to wait
for based on the last known speed (K) and
the currentconversion value (C). Ensure it
is within reasonable limits; a zero value
corresponds to 65536 revolutions.

1 R=K*C:IFR<1THENR=1
ELSEIFR>60THENR=60

Make a call to the interface routine re-
questing a change of revolution count
(request code 7).

2 CALLU,7,R:

Ask theinterface for the mostrecent speed
sample (code 6), which is returned in the
array T.

CALLU,G,VARPTR(T(O)):

Calculate the current speed and execute
the subroutine thatdisplaysiton the screen
and updates the graphics.

Note that since the revolution counter
change request is deferred by the interface
routine, we must calculate the current
speed using the revolutions count that was

used by the interface. This is returned in
the second element of the array. The first
element contains the time taken for that
number of revolutions in “ticks” of the
interrupt clock.

K=2*T (1) /T (0) : GOSUBS:

Lastly, before doing it all again; check to
see if the file logging flag is on, and if so,
save this sample into the log file. (Oh; my
kingdom for an ENDIF in BASIC!)

IFFISTHENPRINTH1, TIMES; K; :
GOTOlELSEl

Line 8 is the start of the screen update
routine. It uses the value K (speed in
kilometres per hour) and updates the screen.
It does a few other things; like make
beeping noises when the speed passes a
multiple of ten.

First; ignore silly speeds; since they would
cause the code to fail with illegal function
call errors (value out of range errors).

8 IFK>1300RK<0
THENRETURN

Next; update the current speed displays if
the speed has changed since we last knew
it. Update the number;

9 IFKO<>KTHEN
PRINT@280,
MIDS (STRS$(K)+" ",2,3);:

then the horizontal bargraph. Here’s a
chance for some optimisation; in that the
code checks to see if it is increasing the
bargraph size or decreasing it, and only
performs graphics commands on the ap-
propriate part of the bargraph.

IFK>KOTHEN
LINE (K0+25,50) -
(K+24,52) ,1; BF: KO=K
ELSE
LINE (K0+24,50) -
(K+25, 52) , 0, BF: KO=K

Now place a new speed sample on the
historical vertical bargraph. Put the ver-
tical bar in;

20 LINE (X, 48)- (X, (48-K/

3)MOD64) :
increment the horizontal position;
X=(X+1)MOD239:

and blank out the next bar.

LINE (X, 48)-(X,0),0:
If the speed moves past a multiple of ten,
make a noise. If we accelerate from 59 to
61, then we’ll here two short tones, the
second higher than the first; indicating an
acceleration. I've set the tones up with

- particular intervals, so it’s possible to

know exactly how fast you are going if you
are musically trained.

J1=K\10:
IFJ1<>JOTHEN
IFJO>50RJ1>5THEN
SOUNDS (J0) , 5:
SOUNDS (J1) ,5:J30=J1
ELSE
JOo=J1
40 RETURN

The following sections of code handle the
function keys. They are executed auto-
matically when the corresponding key is
pressed.

F1 is called “CLEAR”. This asks the
interface to reset it’s odometer settings
and any other internal state information.

200 ‘clr

210 CALLU,3,1'reset
215 BEEP

220 RETURN

F2iscalled “ON”. This enables the inter-
rupt portion of the interface routine. To
start the program, you would type RUN,
then press the F1 then the F2 keys.

300 ‘on

310 CALLU,4’'start
315 BEEP

320 RETURN

F3 is called “OFF”. This disables the
interrupt routine. You’d do this if you
were leaving the car...

400 ‘off
410 CALLU, 5’ stop
415 BEEP

Inside TMQ

- 30 -

Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILiii

420 RETURN

F8iscalled “MENU”. This just returns to
the menu.

Since the interface routine runs as an
interrupt, it keeps running. This means
that the odometer will keep incrementing
even though the operator starts editing a
text file or runs something else.

500 MENU

F4 is called “RECD”. This turns on or off
recording mode. Italsoturnsonoroffatag
on the screen indicating the current state
of recording mode.

600 ‘record

610 IFFI%THEN
FI%=(0>0):
LINE (239,54) -

(235,50) ,0,BF

ELSE

FI%=(0=0):
LINE (239,54) -

(235,50) ,1,BF

620 RETURN

FSiscalled “MARK?”. Itacceptsalocation
name and records it, the time and the
current odometer value in the log file. The
main complexity here is the need to avoid
the use of the ordinary BASIC INPUT
verb, as this will blank the line following
entry; which will destroy part of the screen
graphics. Instead, the INPUT$() function
is used to build our own version of INPUT.

Additionally, the TAB key is used to
resample the odometer. This is useful if
you would rather enter the description of
the location then take an odometer sample.
You can even take a sample in the middle
of entering the text.

The backspacekey is also handled; seeline
750.

Variables used here are;

A$ the entered keystroke

B$ the accumulated text line

C$ the time and odometer sample
T(Q the odometer sample itself

700 ‘mark
710 B$=" "
720 CALL
U,1,VARPTR(T(0)):

C$= TIMES+
STRS (T (0)) +STRS (T (1))
730 PRINTQ@O, "Mark "C$"
uascnks (27) IIK"’-
740 A$=INPUTS$(1):

IFASC (A$)=9THEN720
750 IFASC (A$)=8THEN

IFLEN (B$) <>OTHEN

B$=LEFTS$ (B$, LEN (BS) -
1):
PRINTCHRS (8) "
"CHR$ (8); :

GOTO740

ELSE740

760 IFASC (A$)<>13THEN
B$=BS+AS:
PRINTAS; :
GOTO740

770 PRINT#1, "Mark "C$"

nBs

780 RETURN

F6 is called “RV down”. This halfs the
current conversion ratio used to calculate
the optimum number of revolutions given
the currentspeed inkilometres per hour. It
isthisratio which determines the accuracy
of the speed displayed. As the ratio de-
creases, the accuracy drops in that the
difference in displayed speeds becomes

greater.

The one advantage to decreasing thisratio
is that it enables far more samples to be
taken in a given time interval.

800 ‘rvd
810 c=C/
2:SOUND523, 1:RETURN

F7 is called “RV up”. This doubles the
conversion ratio; and thus increases the
accuracy of the displayed speed at the
expense of longer update times. No good
in city traffic.

900
910
C=C*2:SOUND523, 1 :RETURN

‘rvu

The last section; initialisation, is placed
here merely to increase the speed of the
mainloop, by reducing the number of lines
that BASIC has to scan through when
resolving a GOTO or GOSUB statement.

I guess this BASIC also finds variables by
scanning a list sequentially, so in line
10101declare first those variablesin order
by frequency of use.

1000 ‘initialisation
1010 DEFINT A-Z: DEFSNG
C,Z:

DIMT (4), K, I, O,
A$, A, B, C, D, L, P1,
P2, R, U, S(12)

1030 U=-2579' address
of interface routine

Lines 1050 and 1060 define the ratio used
to convert from speedometer cable revolu-
tions per clock tick to kilometres per hour.
There are two lines used here because I’ve
been experimenting. The first line is the
ratio thatI’ve settled on purely by trail and
error; looking at the car’s speedometer
and comparing against the program’s cal-
culated speed. (I wasn’t driving at the
time).

The second line is what it should be ac-
cording to theory. 0.7115 is the distance
traveled in metres per speedo cable revo-
lution; as measured using chalk and the
subroutine at line 2000. 255.7545 is the
number of interrupt clock ticks per sec-
ond; which was measured using the built
in realtime clock chip. I can’t see the
relationship between this value and the
published 2.4 MHz clock speed of the
Tandy 102. 3.6 is the conversion ratio for
converting metres per second tokilometres
per hour.

1050 Z2=775.29862

1060
2=0.7115%255.7545*3.6'
factor

1070 FI%=(0>0) '
logging file flag

The variable Cis the ratio used tocalculate
the optimim number of revolutions per
sample according to the current speed.

1080 C=0.6 ‘
conversion ratio

This section sets up the function key names
onthe labelline. The SCREEN verb turns
offthe label line first, then turns iton when
the keys are set up. The last two lines

Inside TMQ

-31 -

Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILii

enable the BASIC function key interrupt
logic; whereby the function key routines
are called regardless of what the mainline
is doing.

1090 DATA "Clx", "Oa",
noffn . "Recd" ’ "Mark" .
"Ryd" , "Rvu", "Menu"
1100 SCREENO,O0:
FORJ=1TO8:
READAS
1110 IFA$<>""THEN
KEYJ, A$+CHR$ (13) :
NEXT
ELSE
KEYJ,A$:
NEXT
1120 SCREENO,1
1130 ONKEY GOSUB 200,
300, 400, 600, 700,
800, 900, 500
1140 KEYON

This section prepares the array that holds
the tone values used in the sound effects.

1150 FOR J=0 TO 12:
READS (J) : NEXT

1160 DATA O, O, O, O,
0, 12538, 8368, 6642,
5272, 4184, 2092, 1046,
523

1170 OPEN"speeds"FOR
APPEND AS 1

This part of the initialisation routine pre-
pares the constant part of the screen dis-
play. It is placed here so that it can be
invoked separately if required.

1200 ' refresh screen
1210 CLsS

1220 FOR J=24 TO 154
STEP10: PSET(J,53):
NEXT

1230 FOR J=84 TO 124
STEP20: PSET (J,54):
NEXT

1240 LINE (24,50)-
(24,52)

1250 RETURN

Here starts the development and tuning
section. The two routines are started by
RUN nnnn where nnnn is the line number
of the routine.

The first routine is used to display the
number of cable rotations detected. It’s
useful when calibrating the distance trav-

Inside TMQ -32- Inside TMQ

Volume V1.iii

THE MISOSYS QUARTERLY - Summer 1993

Volume VIL.iii

elled perrotation. Unfortunately, it won’t
actually work with the version of the inter-
face routine in use now.

2000 GOSUB1000:

CLS:

R=1:

X=0:

PRINT#1, "sample
dual rotations ..."
2010 CALLU,D,R
2015 IFINKEYS$=" "THEN

PRINT#1,X:
PRINT@40,X
2020 X=X+2:

PRINTQO,X;
2030 SOUND600,1
2040 GOT02010

Thisroutine is used to playback arecorded
speed sampling session.

3000 ‘see

3010 GOSUB1000:CLOSEl
3020
OPEN"speeds"FORINPUTAS1
3030 T$=INPUTS(9,1):

B$=B$+A$:
GOT03040
ELSE
K=VAL (B$) :
GOSUBS
3050 IF NOT EOF (1) THEN
3030
3060 A$=INPUTS (1):

Bg="" PRINTQO, ;:
3040 A$=INPUTS (1,1): RUN
IFA$<>" "THEN
HARD DRIVES FOR SALE

Genuine Radio Shack Drive Boxes with Controller,
Power Supply, and Cables. Formatted for TRS 6.3,

installationJCLin-
cluded. Hardware
write protect op-
erational. Docu-
mentation and
new copy of

MISOSYS RSHARDS/6 included. 90 day warranty.
5Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
Los Angeles, CA 90027
(213) 664-5059

\g’e%s : XSED

SNy
RADIO SHACK
TANDY OWNERS!
Find the computer
equipment that TANDY
no longer sells.

PACIFIC COMPUTER EXCHANGE
buys and sells used TANDY

TRSDOS
XENIX
MSDOS
COMPUTERS &
PERIPHERALS

We sell everything from Model 3's and 4's
to Tandy 6000's, 1000's to 5000's, Laptops,
and all the printers and hard disks to go with
them. If we don't have it in stock, we will do
our best to find it for you. We have the
largest data base of used Radio Shack
equipment to draw from. All equipment
comes with warranty.

PACIFIC
COMPUTER
EXCHANGE
The One Source For
Used Tandy Computers

1031 S.E. Mill, Suite B
Portland, Oregon 97214
(503) 236-2949

Inside TMQ

-33-

Inside TMQ

Volume VLiii

THE MISOSYS QUARTERLY - Summer 1993

Volume VILii

'

Upgraded Functions for Pro=MQ
by J.F.R. Slinkman

Included on the associated DiskNotes 7.3
is an archive which contains a new dfix()
function (FDFIX/ASM and FDFIX/REL),
a new round() math function (ROUND/C
and ROUND/REL), and a new and much

faster hi-res graphics paint() function
(PAINT3/ASM and PAINT/REL).

The new round() function is documented
as follows:

round(MATH)

double round(argx):;
double argx;

argx -

Description:

rounded up.

Warning:

Example:
#include <stdio.h>
#include <math.h>

double round():;

This function obtains the rounded value of a double.

is the double for which the rounded value is desired. . .

This function returns the integer closest in value to “argx.” Fractional values

less than 0.5 will cause “argx” to be rounded down. Otherwise,““argx” will be

Do not attempt to use this function without a forward declaration, either in the
source code or in the MATH.H header file.

/* also #option USERLIB if necessary */

round(MATH)

Also, when using the new round() func-
tion in your programs, you MUST do one
oftwo things: (1)alwaysincludea“double
round();” forward declaration in your pro-
gram; or (2), edit your MATH.H header
file to add “round()” to the list of extern
doubles (on the assumption you’ll never
use the round() function without also us-
ing other double functions requiring in-
clusion of the MATH.H header).

(NOTE: while you'reatit, youshould also
edit your STDIO.H header by adding the
line: “long labs();”, as this was omitted in
release 1.6, and causes the function to fail
if a forward declaration is not included in
each and every program that uses it.)

Also included are the listing PAINT3/
ASM and the module PAINT/REL. This
is a replacement for the old PAINT2/
ASM. It’s about three times faster, and
uses about 70 bytes less memory, than the
previous version.

INSTALLATION:
PAINT:

If you have MLIB, load IN/REL, and use
the <R>eplace option toreplace the old hi-
res PAINT module with the new one sup-
plied.

If youdo nothave MLIB, and already have
the hi-res PAINT module in your
USERLIB, then you must recreate your
USERLIB from scratch, using the new
PAINT module instead of the old one.

char inbuf[8l]; |
double dl, d2; ROUND:
main () { puts("round: enter your number: EOF to
axit"); If you have MLIB, load MATH/REL, and
whiile (TRUE) use the <I>nsert option to put ROUND
if (!gets(imbuf)) before CEILL.
break;
d2 = round(dl = atod(inbuf)); If you do not have MLIB, add ROUND to
printf£("dl = %g, d2 = %g\n", d1, 42); your USERLIB.
}
} .
round: enter your number: EOF to exit FDFIX:
-3.33 |dl = -3.33, d2 = -3
6.666 |dl = 6.666, d2 = 7 If you have BOTH MLIB and SLIB:
The module FDFIX is found in LIBA/
Inside TMQ -34 - Inside TMQ

Volume VLiii THE MISOSYS QUARTERLY - Summer 1993 Volume VILiii

REL. Unfortunately, LIBA/REL is too
large to fit in the MLIB buffer. However,
if you have the utility SLIB, you can still
put the new FDFIX module into LIBA as
follows:

Split LIBA into 2 segments via: SLIB
LIBA 9100:d

Then use MLIB to load LIBA/RO1, and

use the <R>eplace option, specifying’

FDFIX. Then <S>ave LIBA/RO1 back to
disk. Next, rejoin the two segments via:
APPENDLIBA/RO2LIBA/RO1 (STRIP),
followed by a COPY LIBA/RO1 LIBA/
REL.

NOTE:If youdon’thave SLIB, you should
buy if NOW, as it’s cheaper than dirt, and
on the MISOSYS, Inc., close-out list.

Ifyoudonothave BOTHMLIB and SLIB,
you must add FDFIX to your USERLIB.

Have a fun summer

IILIIIY
\F
0!
O

s
I

L/

Inside TMQ

-35 - Inside TMQ

r---------—-----------------_-------------

Choose LDOS 5.3.1 or LS-DOS 6.3.1

tr Both Model I and Model III support similar com-
mands: all features of Model III 5.3.0 are in Model I
5.3.1. That includes such facilities as DOS and BASIC

1
|
Both Model I and Model III LDOS support similar

I,
l commands; DOS commands are virtually similar to
Model 4 LS-DOS 6.3.1 syntax where possible.

The DATE comumy d, “Date?” prompt on boot. and -

TED text editor, BASIC enhancements etc All DOS

I
| help files, SETCOM and FORMS library commands,
1

s) with a 30-day
rt is available for I

. ~ wrltten custormer SUppo;
30 days from the purchasé daté:Versions of 5.3.1 for

Speclfy SYSTEM (DRIVE:dl.SWAP—d2 the Model I and Model I areavallable Versions of |

pad

pad

%

L------—----------------------------------

drive d1 for d2. Either may bethe system drive, and
aJob Control Language file may be active on either of
the swapped drives.

The TED text editor has commands to print the
entire text buffer, or the contents of the first block
encountered. Obtain directories from TED, tool!

Have extended memory known to the DOS? The
SPOOL command now permits the BANK parameter
entry to range from 0-30 instead of 0-7.

Alter the logical record length of a flle with “RESET
filespec (LRL=n)"

Specify “RESET fllespec (DATE=OFF)" to restore a
file’s directory entry to the old-style dating of pre-6.3

release. Specify “RESET fllespec (DATE=ON)" to es- -

tablish a file’s directory date as that of the current
system date and time.

SYSTEM: command supports removable and reus-
able BLINK, ALIVE, and UPDATE memory modules.

Double-density BOOT support for Model I with
embedded SOLE and FORMAT (SYSTEM). Supports
mirror-image backup, too. Reworked FDUBL driver

eliminates PDUBL and RDUBL and takes less memory; °

enhanced resident driver eliminates TWOSIDE.

Model Il version auto-detects Model 4 for installation
of K14 keyboard driver; supports CAPS, CTRL, and
function keys.

SPOOL command offers Pause, Resume, and Clear
parameters. (OFF) attempts to reclaim memory used.

6.3.1 for the Modél'4 and Model IEare available;

(specify 6.3.1 F or 6.3.1 D). Some Model I 5.3.1
features require lower case or DDEN adaptor.

DOS and BASIC
Reference Manuals

Two new reference manuals are available from MISOSYS. First, we
have the the 349-page “LDOS™ & LS-DOS™ Reference Man
catalog number M-40-060. This single manual fully-documents both
LDOS 5.3.1 and LS-DOS 6.3.1 in a convenient 8.5" by 5.5" format.
If youuse one, or the other, or even both DOS versions, youmay want
to bring yourself up to date with a single manual. Gone are the many
pages of update documentation. Price is $30 plus $5 S&H.

We also publish the “LDOS™ & LS-DOS™ BASIC Reference
Manual”, This 344-page book, catalog M-40-061, covers the inter-
preter BASIC which is bundled with LDOS 5.3.1 (even the ROM
BASIC portion), the interpreter BASIC which is bundled with LS-
DOS 6.3.1, and both Model I/III-mode and Model 4-mode EnhComp
compiler BASIC. One convenient 8.5" by 5.5" manual covers all four
BASIC implementations for $25 plus $5.00 S&H. Since this new
manual covers our compiler BASIC, you can purchase the disk
version of EnhComp for $23.98.

N
~~

Model
4 French and German versions are also available I

"h'l"nll"”l“

L

IS

MISOSYS has been shipping complete drive kit packages since September 1989 which
plug into Model 4/4P/AD and Model 111 computers; let us build one up for you! Our host
adaptor, which interfaces the 50-pin expansion port of the TRS-80 (host) to the 50-pin
SCSI port of the HDC, sports a hardware real time clock option using a DS1287 clock
module. With its internal battery lifetime in excess of 10 years, never enter date and time
again. It even adjusts for daylight saving time! Another option available is a joystick port
and Kraft MAZEMASTER joystick with a port interface identical to the old Alpha
Products joystick; thus, any software which operated from that joystick will operate from
this one.

Software supporting the S1421 and 4010A controllers includes: a low level formatter; an
installation utility and driver; a high level formatter; a sub-disk partitioning utility;
utilities to archive/restore the hard disk files onto/from floppy diskettes; a utility to park
the drive’s read/write head; a utility to set or read the hardware clock; a keyboard filter
which allows the optional joystick to generate five keycodes; and a utility to change the
joystick filter’s generated “keystroke” values after installation. Optional LDOS 5.3
software is available.

Twenty megabyte drive packages are currently built with a Seagate ST225 hard drive;
Forty megabyte packages use a Seagate ST251-1 28 millisecond drive. Drive packages
are offered as ‘pre-assembled kits’. Your ‘kit’ will be assembled to order and fully tested;
all you will need to do is plug it in and install the software. Drive kits include a 50-pin host
interface cable and the hardware clock. Full implement of status lights included: power,
ready, select, read, and write. Add a joystick or hardware clock for but $20 additional per
option (see price schedule).

Aerocomp Hard Drives now available from MISOSYS
MISOSYS is also the sole source of remaining brand new Aerocomp hard drives. All
Aerocomp drives include status LEDs, software driver and formatter, power and host
cables, and installation Job Control Language. We are building their20M and 40M drives.
We also have Montezuma Micro CP/M Hard Disk Drive drivers available.

L
:=| wl'

With a 20 or 40 MB MISOSYS Hard Drive p
connected to your TRS-80 Model III or 4,

your computer will sail through data access.

2 /“5'

lf:‘-

.................
> Prices currently in effect:
Complete MISOSYS Hard Drive:

o 20 Megabyte kit: $395
: 40 Megabyte kit: $495
o Joystick option $20
e Hardware Clock Option $20
® LDOS software interface 330
o SCSI software interface 825
e Aerocomp Hard Drives:

% 20 Meg unit $350
A 240 Meg drive $450
® H/A with MFM software $75

: Separate Hard Disk Controllers
e Xebec 1421 HDC 345
® Adaptec 4010 HDC 345
: WD1002S-SHD $45
e Drive power Y cable $5
® XT drive cable set 35

: Note: freight charges are addilional..
o Prices subjecttochange without notice o

Order any hard drive kit or unit from MISOSYS and we'll pre-
install either LS-DOS 6.3.1 or LDOS 5.3.1 at no extra charge.

MISOSYS, Inc. Contents: Printed Matter

PO Box 239
A\ Sterling, VA 20167-0239
emm——N, U.S.A.

Attention Postmaster: Address Correction Requested

Forwarding and return postage guaranteed

BULK RATE
U. S. POSTAGE
PAID
Sterling, VA
PERMIT NO. 74

