

Volume VII.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

The MISOSYS Quarterly is a publica
tion of MISOSYS, Inc., PO Box 239,
Sterling, VA20167-0239, 703-450-4181.

Unless otherwise specified, all material
appearing in herein is Copyright 1993
by MISOSYS, Inc., all rights reserved.

THE MISOSYS QUARTERLY

Subscriptions are no longer being
accepted for The MISOSYS Quar
terly.

TMQ Toolbox

The MISOSYS Quarterly is published
using the following facilities:

The hardware used to produce the "camera
ready" copy consists of an AST Premium/
386 computer (20 MHz) with 9 Megabytes
of RAM, a Seagate ST4096 80M HD, ST251
40M, Expanz! card; a CMS DJ10 tape
backup, a NEC Multisync II monitor driven
by a Video Seven VGA card, an AST Tur
boScan scanner (Microtek MS300), and a
NEC LC-890 PostScript laser printer.

Text is developed, edited, spell-checked,
and draft formatted using Microsoft
WINWORD Version 1.1; Submissions on
paper and letters are scanned and con
verted to text using ReadRightoptical char
acter recognition software by OCR Sys
tems. Final page composition is developed
using PageMaker 4.0 by Aldus.

The Blurb

Table of Contents

The Blurb Letters to MISOSYS
TMQindex 2 Spurious Keystrokes 6
Upcoming at MISOSYS 2 Public Domain smallC 7
Points to Ponder 2 Cheap Shots 7
Trade-in Policy 3 LB and paths 7
In this issue ... 3 Laser Printers for TRS-80s 8
TMQSchedule 4 SuperScripsit & Lasers 9
MISOSYS Forum 4 External Jumbo 9
DISK NOTES 7.3 4 LB/LB86 Print Bug 9
LB Templates 4
DOS Manuals 4 InsideTMQ
MS-DOS Products 4 RINGMOVE 10
SCSI Driver 5 UPGAT/CMD Ver. 2.0 19
FAX Number 5 PC DMA Transfer 21
Qoseouts 5 Cars, ROMs and 102s 26
Used Diskette Clearance 5 Upgraded Functions for Pro-MC 34
Hardware Clearance
Used Software

MISOSYS, Inc.
Pacific Computer Exchange
RoyT. Beck
TRSTimes magazine

5
5

List or Advertisors

List or Patches/Updates in this Issue

Revised LB 1 Print Module [available only on demand]

- 1 -

36-38
33
33
35

*

The Blurb

Volume VII.ili THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

TMQ Index

In this column of the last issue, I an
nounced the availability of an index to all
past issues of The MISOSYS Quarterly. In
the intervening months, I have received
orders for two printed copies and no disk
copies. Because of the dismal demand, the
index is discontinued.

Upcoming at MISOSYS

As this is being written, the conversion of
LB86 MS-DOS version database to a
DeskMate environment is approximately
50% complete. It appears thatLBDM2will
be either a one or two program package
(not counting utilities). I have completed
the database definition module, the screen
defmition module, the entire pull-down
menu-driven front end, the screen presen
tation, the ability to view and edit path flle
definitions, and the ability to view field
data. Essentially left to implementation is
the sort and select module, the print screen
definition, and the report writer.

LBDM2 uses the identical database struc
ture as LB and LB86; however, it was
apparent that to provide graphical features
in the view screen, it was necessary to
design a completely new view screen flle
structure. LBDM2' s screen is object-ori
ented; it currently supports five different
object types: lines, beveled rectangles, text
strings, data fields, and DeskMate DRAW
figures. The screen designer has total con
trol over the color, width, and type of each
individual line. The designer also has
complete control over the color, width,
bevel, fill, and pattern for rectangular
objects (beveled rectangles collapse to a
rectangle with a bevel of zero). Each text
string can have its own foreground and

The Blurb

background color as well as character
attributes (bold, underline, inverse, and
grayed. All data fields currently supported
byLBaresupportedinLBDW.Datafield
viewing, however, uses DeskMate edit
fields. Because of the capability ofbuilt-in
scrolling, a maximum horizontal window
of 64 characters in width is provided with
the field contents scrollable within the
view window. Fields can also be'bordered
with a flat box or raiSed box (or no box) at
the user option. Any number of DRAW
figures can also be placed on the view
screen.

Rather than have specific upper limits on
the quantity of objects which can be placed
on a screen, LBDW's screen ftles are
variable length; a data structure defmes
the number of each object type. During
screen defmition, the designer can select
and move an object about the screen for
placementrevision (or deletion). Currently
select, move, and relocate is the means by
which objects are relocated, however, ob
ject drag and drop will be implemented.
Selected objects can also be edited as to
their individual characteristics: color,
width, pattern, type, etc.

With but one exception, any time a field
reference is needed, it is selected from a
pop-up dialog box with the list of fields
referenced in a list box. The one exception
is the field reference within a calculation
string.

The screen designer also includes an auto
matic design option which is similar to the
autogen feature in LB86. The option has
been enhanced to configure a view screen
with either one or two columns of data
fields - automatically limiting each data
field's view window to fit within the allo
cated region.

- 2-

Depending on the shift of my time to
outside employment, I may not reach my
target of a summer release of LBDM2;
however, itshouldmakeitout the door this
year. There will be some features ofLB86
which won't make it in to LBDM2- such
as ''Run Automatically". But to compen
sate, LBDM2 already has features that are
not in LB86. There's always a trade-off.

Points to Ponder

According to an article in Electronic En
gineering Times, trillions ofbits per square
inch in data storage may soon reach frui
tion based on research at Kyoto University
using photochemical hole-burning tech
niques (PHB). Kazuyuki Hirao, the re
searcher, workedatroom temperature with
boric acid glass doped with samarium
ions. A variable wavelength laser is used
to excite electrons in the medium which
changes their absorption characteristics
resulting in a "hole". Bit detection is per
formed when light passes through without
being absorbed.

The boric acid glass is widely used in the
manufactureofheat-resistantkitchenware;
thus, production techniques are not diffi
cult. However, further technological ad
vancements must be made in the develop
ment of lasers whose wavelengths could
be stepped in O.Olnm, as well as an in
crease in the read/write speed (currently
about one second).

According to Dave Webb, writing in Elec
tronic Buyers News in response to Intel's

The Blurb

Volume VII.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

recent $2 Billion in revenue per quarter,
"In the old days, mM used to make more
in profits than anyone else did in revenue.
It's entirely possible Intel is coming into
that mode." Now I don't know about you,
but a profit of over $500 million on rev
enue of $2 billion for three months means
a huge number of processor sales. Sev
enty-five percent of their revenue comes
from CPUs. Too badffiMdumpedmostof
their Intel stock a handful of years ago.
Why in just one year, Intel' srevenuecould
equal the net worth of Bill Gates!

I found it interesting to read that Japanese
companies supply 60% of the world's
colorCRT's,and 100%ofthe 15-,17-,20-
, and 21-inch color CRT's. That's why a
recently announced price increase of 6%
has sent shock waves around the world.
Big waves hit Taiwan, which now manu
factures 47% of the world's color and
monochrome monitors. So look for mQni
tors to edge up in price.

Did you know that the electronics industry
uses about 7% of the lead in the United
States? That stems from use in solder,
wire, cable, dry-cell batteries, and radia
tion shielding in CRT's. The electronics
industry trade associations are therefore
fighting a 45-cent per pound lead tax
being proposed by Representative Cardin
(D-Md). The tax is designed to remove
lead-based paint from child-care centers
and residential structures.

I mentioned in a previous Blurb that com
puters may one day be at the bottom of the
heap in the world's use of RAM chips.
Well, it appears that computers may also
lose their dominance in the use of high
powered microprocessors. CPUs have al
ready been widely used in all sorts of
electronic equipment in embedded appli
cations. CPUs will now be migrating to the
TV set and cable convertor boxes.

Intel announced they are joining with
General Instrument Corporation and Mi
crosoft (in what business are they not
placing their tentacles?) to develop smart
cable converter boxes using 386 chips for
interactive TV. Most likely, a windows-

The Blurb

type on-screen interface will be provided
to enable TV viewers to "easily navigate
among potentially hundredsofcablechan
nels and services".

How much music do you get on an audio
CD? In most cases, it's approximately 75
minutes maximum. But look out, a Japa
nese petrochemical company has devel
oped a new synthetic resin which should
permit ten times as much material to be
recorded on a CO-sized disk. The new
thermo-plastic X, called 1PX for short,
has sixteen times less viscosity than the
polycarbonate structure currently used in
CDs. That should permit the imprinting of
data at a much higher track density.

I remember when a penn meant a trip to
the hair salon. Not so for Sony! Their new
Pre-embossed Rigid Magnetic technology
(PERM) is a process whereby servo infor
mation is written into grooves cut into the
surface of a disk. The facility allows in
creased track density providing a proto
type2.5"platterwith5,000tracksperinch
- or a capacity of 200 megabytes. That's
just a little greater than the width of the
JKL keys. They expect to eventually in
crease the track density tolS,OOO tpi.

Remember pricing on the TRS-80 Model
I? The base 16KLevelll was$999. Memory
additions of 16K were in the range of
$250. The expansion interface was $299.
RadioShackfloppydriveswere$499. You
even had to pay $16.95 for a three pack of
single-density diskettes. I remember a few
of us in the computer club grouped to
gether to buy diskettes directly from Ver
batim in boxes of100-even then they were
hard to get I recollect feeling like I suspect
a drug dealer would feel making these
clandestine calls - "Hey, got any in yet?"
List price on a Line Printer m was $1960;
I got a used one closed out with a bad
printheadfor$10.Remembera64KModel
II for $3899?

Well DEC's new 64-bit Alpha PC with a
150megahertz processor, 32 megabytes of
RAM, 600 megabyte CD-ROM, Ethernet
LAN port, a 3.5" 2.88 megabyte floppy, a
high-resolution SuperVGA monitor, and

-3-

a426 megabyte SCSI hard disk drive was
unveiled at Windows World in late May
for a price of $6995. The Alpha processor
is a 300 million instructions per second
chip. Douglass Hamilton, president of
HamiltonLaboratoriesinc.,developerof a
UNIX development tool environment,
"1llismachineisdynamite.It'sfasterthan
any machine I've ever worked on."

So what do you have to say about the sale
ofT andy's computer manufacturing busi
ness toAST Research?

Trade-in Policy

With the closeout of most TRS-80 prod
ucts, our trade-in policy exists solely for
our LB database and remaining MSDOS
related products. The policy, where appli
cable, is to just send in an original Table
of Contents page from an equivalentnon
MISOSYS softwareproductwittithetrade
in fee which is 50% of the price of our
product. So for LB 2.3, trade in any other
databaseproductandyoucanpurchaseLB
orLB-86for$49.50plusS&H.How'sthat
for a deal? It doesn't matter for what
system or operating environment your
trade-in was designed for. This offer does
notextendtoproductsre-soldby MISOSYS
or products on sale.

In this issue ...

Continuing with the C venue, though not
in tutorial fonn, I bring you a useful
ringmove algorithm for optimizing there
ordering of index -sorted data. There's also
an article which sheds light on a obscure
problem when using DMA on a PC. A
handful of contributed entries make up the
remainder of this next to last issue.

The Blurb

Volume VII.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

TMQ Schedule

Folks, there's but one more issue of The
MJSOSYS Quarterly left to go. Anyone
who has a "93/08" on their mailing label
will be sent that issue in approximately
three months. TMQ will cease publication
with issue VII.iv. I currently have some
copies of Volume VI which can be had for
$4 per issue -plus S&H.

MISOSYS Forum

I sponsor a forum on CompuServe. You
can reach some "experts" on TRS-80 and
MS-DOS subjects by dialing in, then GO
PCS49, or GO LDOS. This is probably the
oldest forum still-surviving from the
MicroNet days. If you want to see it con
tinue, how about popping on for a chat or
a question.

The forum contains many programs to
download, as well as lively discussions
which thread through the message system.
You can direct a message to me at
70140,310. Post a message in private if
you don't want it "broadcast".

DISK NOTES 7.3

Each issue of The MISOSYS Quarterly
contains program listings, patch listings,
and other references to files we have placed
onto a disk. Where feasible, the text ac
companying an article is also on DISK
NOTES. DISK NOTES 7.3 corresponds
to this issue ofTMQ. The disk is formatted
usually for TRS-80 LOOS/LS-DOS users

The Blurb

at40D1 (that's40 tracks, double density,
one sided). MS-OOS users can request a
5.25" 360K disk. If you want to obtain the
fixes and the listings, you may conve
niently purchase a copy of DISK NOTES
priced at $10 Plus S&H. The S&H
charges are $2 for US, Canada, and
Mexico, $3 elsewhere.

LB Templates

Please note the availability of the follow
ing LB database templates:

LB Template Disk 1

DRA Dragon magazine ar-
ticle index

GAMEINV Role playing game in-
ventory

LEAP Parent group address
roster

PROP Valuable property
record

PTA PTA roster
STAMPS Stamp collection
STREK Star Trek collection in-

ventory
VID Video Tape and Laser

disk library

LB Template Disk 2

AUD Catalog of audio disk/
tape collection

COMPUTER Catalog of owned com
puter equipment

CREATURE Catalog of adventure
game creatures

Lm Library card catalog
MAll..FILE Address mail list I LB

database example
MISOSYS Customer information

database

To use any template, simply copy the files
to your data drive, create a path file using
LB menu option 14, thenaddyourdata. To
create a template for others, simply use

-4-

LBMANAGE to duplicate your database,
then copy the new set of files to another
disk. Submit your templates to MISOSYS
for publication. They are available at $10
per disk + $3S&H, or free for download
from our CompuServe forum. An MS
OOS 360K disk will hold a pair of tem
plate disks.

DOS Manuals

I will continue to publish both the ''LOOSTM
& LS-OOSTM Reference Manual" which
covers LDOS 5.3.1 (Model I and lli) and
Model4LS-DOS6.3.1,andthe"LDOSTM
&LS-DOSTM BASIC Reference Manual",
which covers the interpreter BASIC which
is bundled with LDOS 5.3.1 (even the
ROM BASIC portion), the interpreter
BASIC which is bundled with LS-DOS
6.3.1, and both Model 1/Ill-mode and
Model4-mode EnhComp compiler BA
SIC. The DOS disks will continue to be
made available. There are no more "Up
grade Kits".

MS-DOS Products

I still have some Tadiran TL-5296 6V
lithium batteries usable in most AT -class
machines. Don't wait for your battery to
fail and lose your configuration data. A
spare's shelf life will probably out last
your machine.

LB86 continues to be available as a useful
data base manager.

The Blurb

Volume VIT.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VIT.iii

SCSI Driver

MISOSYS hasaSCSidriver,H-HD-SWS,
available for use with our H-HD-MHA
Model ill/4 host adaptor. The SWS driver
is for directly supporting a Seagate SCSI
drive or exact equivalent; it can handle a
drive up to eight heads and 1226 cylinders
(approximately 80 megabytes). Seagate
drives which are in this capacity range
include the 48MB ST157N, the 60MB
ST177N, and the 84MB ST1096N. These
drives are out of production, however, re
furbished drives should be available at
reasonable prices. Drivers for both Model
III and Model4 modes are included. As of
this writing, three folks have purchased
the driver. With that kind of sales volume,
I might just retire to Tahiti!

FAX Number

If you want to reach us by fax, try 703-450-
4213.

Closeouts

The big debate continues as to what to do
with these old TRS-80products. My close
out date of June 15th 1993 has come and
gone. I am out of pre-printed documenta
tion for a number of products: AFM,
DoubleDuty, DSMBLR/PRO-DUCE, all
three GO products (Maintenance, System
Enhancement, Utility), HDPACK, Host/
Term, MC/PRO-MC, MRAS/PRO
MRAS, PowerMail, RSHARD, Cornsoft
Group Game Pack. These are all now
discontinued. Other than the DOS ver-

The Blurb

sions, DOS manuals, and LB Database
Manager, all otherTRS-80 software prod
ucts are discontinued. Ifl am able to fmd
the time to rework documentation into a
disk-ftle format, I will migrate selected
products to shareware status. Now then, if
folks want that process sped up, how about
some volunteers who will be able to take
documentation .ftles along with program
disks and build up archived sets of disks
available for shareware duplication. You
will need the capability of accessing docu
mentation ftles written using SCRIPS IT,
ALL WRITE, SuperScripsit,andMicrosoft
WORD.

Used Diskette Clearance

I have many cartons of used floppy dis
kettes- both 5.25" and 8". Most disks were
used for archiving ftles and have been used
very infrequently. All have labels affixed
which are difficult to remove. Just to clean
house, I will sell these disks dirt cheap. All
disks will be bulk erased; sleeves are gen
erally not available. Prices are as follows
(shipping charges are additional)::

8" DS-DD
8" SS-DD
5.25" SS-DD
5.25" SS-SD

$0.40/each
$0.25/each
$0.15/each
$0.10/each

Hardware Clearance

Over the years, MISOSYS has accumu
lated TRS-80 hardware and related equip
ment in excess of current needs. The fol
lowing items are now classified as surplus
and are available for sale to the fl.l'st takers
(shipping charges are additional):

• Tandy color 2000 e/w stand $150
• Tandy 1000 &mono monitor $100

-5-

• TRS-80 Model4P (gate array)$100
• TRS-80 Model4P (gate array)$100
• TRS-80 Model 4D e/w XLR8er and

MicroLabs Graphics board $150
• TRS-80 Model III (working) $25
o TRS-80 Model III (no video) $15
• Tandy DT-1 Data Terminal $15
• Amdek Video-300 Monitor $25
• BMC Monitor (ftrMAXorMl) $15
• 15 Meg Primary Radio Shack HD

$150
• 12 Meg Secondary (bad drive) $25
• DMP-500 line printer $75
• Line Printer III (no printhead) $10
• Radio Shack Modem II $10
• Well-used bare floppy drives of vari-

ous brands $5

Used Software

Thefollowingitemsofusedseftwarepack
ages are available for purchase.· These are
items accepted as trade-ins or otherwise
accumulated. If you have an interest, I
will sell all of these packages • approxi
mately two cartons • for $50 + freight.
All items must go in the next three months
or they hit the landfill.

• Radio Shack C, 26-2230 $15
• pfsFILE, Model4 26-1518 $15
• pfsFILE, Model3 26-1515 $15
• Series I EDTASM l/III 26-2013$10
• Radio Shack ALDS 26-2012 $15
o Proftle 3+ 26-1592 $15
• Compiler BASIC (III) 26-2204 $15
• ZEN EDTASM $5
• Quikpra+ $5
• ZBASIC 2.21 $5
• Level I BASIC Instruction Course $5
• Sargon II (cassette) $5
• Interlude (Model I) $5
• Gambiet 80 (mod-I tape) $5
• Macro-Man (Model III disk) $10
• Personal Finance 26-1602 $10
• Blackjack/Backgammon (mint) $5
• Microchess 1.5 26-1901 $5

~

The Blurb

Volume VIT.iii THE .MlSOSYS QUARTERLY- Summer 1993 Volume VIT.iii

Letters to MISOSYS

Spurious Keystrokes

Fm WiiiRamsey,Jr.: Dear Roy: I haven't
written to you in a long, long time and I
didn't want you to feel neglected or that I
had forgotten about you!

I don 'thave any real problem or anything,
so obviously this is a matter of extremely
low priority, but this question has both
ered me for years, so I thought I would
finally go directly to the horse's mouth to
get the answer (if there is one).

Since the very early days when we got our
first Model 4 we have had this problem.
We have had it with :versions 6.0, 6.1, 6.2,
and 6.3 of DOS. The problem is that
somewhere in the keyboard software (at
least I have always assumed it to be soft
ware, since we have the problem on all our
computers) we get extra letters when cer
tain keystroke sequences are typed.

Some of the most common are illustrated
below:

We type:
failure
claim
plaintiff
remain
would

The screen shows:
faidlure
claiem
plaifntiff
remaifn
womuld

There are other examples, but these seem
to be the most common. There seems to be
a pattern in words with "ai" and "lai" in
them, but that doesn't expalin "would"
coming out"womuld". Also, generally the
extra letter is an "f' but not always, as even
these examples illustrate.

Several years ago I wrote 80 Micro and
asked if anyone knew what caused this, but
they never bothered to reply or print my
inquiry in one of their open forum depart-
ments.

thing to do with our typing speeds. I type
well over 100 WPM and our typists are in
the 120 WPM range, and we use the
computers almost exclusively for word
processing. However, it seems that I have
had this happen even when I was typing
relatively slowly. It does happen in DOS as
well as when we are using the word pro
cessing program (Scripsit Pro).

I don 'tknow if you have ever run into this,
but I would be interested to know your
thoughts on it. Again, this is absolutely not
critical, but some day when you're sitting
around with nothing to do <<yeah,
right!>> you might put on your thinking
cap and think about this one for a while!

I hope all is well with you and yours, and
I'm looking forward to the next 1MQ.
Best personal regards,

Fm MISOSYS, Inc: Dear Will: This is in
response to your letter concerning extra
neous characters. Your problem -and that
of your typists- is that you all are typing too
fast for the proper operation of the key
board. Let me explain. When you press
down one key of a keyboard, a circuit
closure is sensed by scanning each row in
turn then reading the result of the column.
The data value then read can be decoded to
a particular key given the row that resulted
in a non-zero value. Okay, so what hap
pens when you press down more than one
key simultaneously. Depending on the
way the keyboard is manufactured, you get
a data value unexpectedly different from
what you believe you should get

Try this on your Model4: Simultaneously
-using three rmgers- depress the keys m'
m' and I[] . Do it repeatedly and you will
find that some times, the letter "D" pops
up. This is exactly the phenomenon that
you are getting "faidlure" for "failure".
Try pressing the triad, m [!J im:J and you
will get an extraneous "F' at times; this is
where you get ''plaifntiff' for "plaintiff'.
Lastly, press the triad, ~ llQ] ml and you
will pick up an extraneous "M".

All computer keyboards operate via a
I have always felt that it might have some- matrix: there are rows and columns where

-6- Letters to MISOSYS

Volume VII.iii THE .MISOSYS QUARTERLY- Summer 1993 Volume VII.iii
I

each juncture represents a key. Look at
page 13 of the Winter 92/93 issue of The
MISOSYS Quarterly for an example of a
keyboard mattix. Follow the keycaps of
the domestic keyboard and you will see
that the extraneous key which is generated
falls at the fourth comer of a rectangle
formed from the triad of keys identified
above. What is happening is that the three
keys are electrically depressed simulta
neously resulting in a closure ®ing sensed
in the fourth comer. You can generate
many other spurious key codes: press
[[I lllJ [!J and you get a "K" - not too
common since that triad is unusual for a
sub-string of a word. On the other hand,
type the word 1!91 mJ [!] [£} [[} too fast and
the "ICK" is liable to generate a spurious
''A".

I rarely ever get this kind of a problem
because I never learned to touch type.
Your only solution is to either slow down,
or find a top-quality keyboard with much
faster sensing circuitry and keys with less
electrical contact bounce. Incidentally, this
topic has been discussed to death years ago
as the problem was infamous with the
Model I keyboard.

Public Domain smaiiC

Fm MISOSYS, Inc: Frank Slinkman in
formed me a few months ago that David
Goben released a small C compiler (I don't
get CN80 so I have no way of keeping up
with what Stan Slater has been publishing
unless someone tells me - although I un
derstand there has been a lot of spleen
venting lately}. I thought that odd as a
version of Ron Cain's original smallC C
compiler was available years ago in a
public domain 1RS-80version. I told Frank
that I would try to dig up the smallC
version I remembered seeing in one of the
many boxes of disks in my office. Well, on
April 14, 1993 I found the copy of the

Letters to MISOSYS

Model 4 version of smallC and sent it
along to Frank with the following cover
letter for his possible disemmination of the
disk to those having an interest

Well, Frank, I located the smallC disk I
was telling you about I really had to dig
back into the archives. It was a version of
Ron Cain's (the original small C) compiler
adapted for 1RSDOS 6.2. As you can tell
bythefiledates,itwasavailableinDecem
ber 1984 - almost ten years ago. Much
documentation has existed in the past on
using the compiler; most appeared in Dr
Dobbs Journal, and there also were a few
books available. I would suspect that any
one with a little research could dig up the
reference material.

Have fun with this. The source code is
there for the libi-ary and the compiler. So
much for Goben's small C ten years after
the fact. Where has he been?

Cheap Shots

Fm Richard James: Dear Roy, I'm en
closingthemostrecentcopyofTheMisosys
Quarterly which was sent to my home
address. I have already received one copy
at my business address, and I don't need a
second copy. I would appreciate your up
dating your records so that I receive just
one copy.

I also want to let you know that the soft
ware you have distributed to the TRS-80
community (particularly LDOS) is of su
perb quality and is the equal of any soft
ware I have used on the TRS-80. I am
dismayed at David Goben's cheap shots
about your software. I have purchased two
of his products and neither has been reli
able. His PACK product will not work
properly on any BASIC program which
contains two consecutive null characters,
although the DOSPLUS CRUNCH utility
•

. -7-

worksfme.Inaddition,David'sFBACKUP
utility will not work reliably if called from
within a BASIC program because it evi
dently doesn't respect the memory ad
dresses used by BASIC. I reported the
PACK problem in some detail to David,
and his response was a sarcastic refusal to
fix the problem.

These reliability problems are significant
for me because I am providing software
and support for about twenty TRS-80 us
ers in my company. I have never experi
enced any reliability problems or a sarcas
tic attitude in my dealings with you, and I
want to let you know that! appreciate what
you have done.

LB and paths

Fm William E. Holmes: Dear RoytThank
you for conferring with me on the phone
yesterday concerning a small problem with
LB Data Manager. After considering the
matter, I have decided to leave my fields
like they are, because having some of the
last names out of alphabetical sequence
with the frrst 5 digits of the ZIP is really of
little significance. I mainly need them in
ZIP order for mailing. If I need an alpha
betical listing by club, I can easily get that
by using CLUB as the primary select field.

We discussed briefly the ability to use a
Temporary drive to hold my basic data file
in order to speed up searching operations.
It seems to me that the instructions under
Menu #14 -Verify/Modify Path Settings
are rather brief and don 'tseem to cover my
situation.

First, let me describe my system. I am
using a TRS-80 Model4-D (two double
sideddrives, 360Keach), 64K RAM, with
Anitek's Megamemory (2MEG) installed.
Ihavepreparedaminimum system disk on
which I have installedLB andMEGADRV

Letters to MISOSYS

Volume VTI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

to initialize Anitek's megadrives. Upon
startup I place this disk in the original
Drive :0 (the lower one) and issue the
commandMEGADRVO,lO/A, which es
tablishes a Megadrive :0 of 320K and
copies all the files from the original drive
:0 to it. The installed lower drive then
becomes :1 and the upper one :2. I can
establish Megadrives :3 and :4 at up to
352Keach.

I have been using thisconfiguredsytemfor
the data base named LION, which pres
ently has nearly 1,700 records, with drive
:2 (the upper floppy) as the data file, drive
:1 (lower floppy) for the index and
Megadrive :3 specified as the working
drive during sorting. Searching forarecord
on drive :2 seems to take quite a long time.
I would like to use one of the Megadrives,
but I want to be assured of having my data
saved on a floppy disk, in case of power
failure or other catastrophe. I can't deci
pher how to do this from the two pages on
this subject in the manual. Please help me.

On another subject, which we also dis
cussed briefly, I am considering procuring
an IBM compatible computer, as there
doesn't seem to be too muchfuture for my
1RS-80's (I have two them- this4-D and
another one converted to two-sided drives,
this one being used primarily for Amateur
Radio Packet operations). I understand
that I would have to have another Program
disk,butishouldbeabletoHypercrossmy
data files. Please give me a quote on the
IBM compatible disk.

Thanks for helping this 7 4-year old fellow
conquer LB to the extent of keeping files
for making mailing labels. Previously, I
have used ALL WRITE, which is extinct.
I had to use five different files for my 1,700
records and had no sorting capability. I
think I am going to like LB as I continue
to learn some of its "tricks".

Fm MISOSYS, Inc: Dear William: This
is in response to your letter concerning the
use of a RAM drive for LB. What I was
trying to say via telephone, was that the LB
sort operation could be sped up consider
ablybyestablishingthetemporarydriveas

Letters to MISOSYS

a RAM drive. True, if you have the RAM
drive capacity, you could speed up the
entire operation of LB 's data access by
copying your data file (name/DEF and
name/LB)toaRAMdrive;however,ifyou
are going to do any data updating, I really
would not recommend that.

The sort process in LB requires the use of
temporary storage if the amount of avail
able memory (in the normal DOS address
space) is insufficient to hold the sort strings
and index pointers. It is the placement of
thetemporaryworkfile(s)onaRAMdrive
which then speeds up the sorting. I believe
that in your configuration, drive :3 is a
RAM drive; you have properly established
the PATH specifications for the Temp
Path as ":3".

Now then, if you want to access your data
fromtheRAMdrive(withoutupdatingit),
simply copy the two files noted above to
your RAM drive prior to invoking LB;
invokeLB and change the Data Path speci
fication for the database to the RAM drive
prior to selecting the database name; then
select the database with menu option 1.

Lastly, if you wish to convert over to the
MS-OOS version ofLB (LB86), you can
do so for half price ($49.50 + $5S&H).

Laser Printers
forTR8-80s

Fm Martin J. Rapoport: I am constantly
reading about how the Radio Shack Com
munity needs to share information and
ideas in order for us to maintain our Model
ills and 4s. And yet, when I wrote a letter
concerning my use of a laser printer with
Model4 Superscripsit,it was neverprinted.
I am not looking for a pat on the back, but
I have gotten many ideas and changes
through the Radio Shack after-market
network in general, and you in particular,
and I wanted to give something back.

-8-

I am running my accounting office with
two Model 4Ps, using Seagate 40 Meg
drives (thanks to you), harddrive boot
capability (thanks to 1RSTimes), softboot
to Model ill mode (thanks to both), 360
5.25" and 720 3.5" floppies set up for 8
physical/logical drives. I use two MSOOS
machines for all tax work, but I will not
give up my Model4Ps and Model4.

Every article I ever read said that we
cannot run Superscripsit with a laser
printer because there are no drivers, and
Superseripsit resets the printer if you pre
set it. This letter, and the letterhead, is
being written on a Model 4, using
Superscripsit and a laser printer.

I would think that there are a lot of users
who would be interested in knowing how.
If you wish, I can write an article detailing
the key points. It is actually very simple for
the knowledgable user. If not, then I will
at least know that I tried. Incidentally, my
own setup for the Epson LQ1050 works
better then the Epson drivers I bought. I
could not make them double underline,
but my driver does. I have both the laser
and Epson in the same driver so that I can
actually run either one if I omit printer
codes.

Fm MISOSYS, Inc: Sorry, Martin, but do
to space limitations (and trimming a sec
tion to a page boundary) resulted in your
last letter getting deferred. There is space
in this issue to print it.

Now I have printed articles on using laser
printers with the 1RS-80. According to
my copy of the TMQ index, I see 300 Dots
ontheTRS-80inissue V.i,and300DOTS:
An Update, in issue V.iv. Also, there has
been a few letters relating to Gary
Shanafelt's and Dr Lee C. Rice's laserjet
and deskjet utilities for Allwrite. It was
also noted that Goben has a laser printer
driver for Supercripsit and Scripsit Pro.
But if you have something further to add,

. submit it and I will see if there is room for
it. There's one more issue to go for The
MISOSYS Quarterly.

Letters to MISOSYS

Volume VIT.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.iii

SuperScripsit & Lasers

Fm Martin J. Rapoport, P.O. Box 315
Trexlertown, PA 18087 [215-398-1401]:
It has been my understanding that the
Model Superscripsit will not work with
laser printers. The ones that might cannot
double -underline. This letter is being
printed using Superscripsit. The printer is
a KYOCERA F-800A usin a Qume II
emulation and legal character set.

I guess weare stillfmdingways to keep our
Model4's up-to-date with technology. I
got lucky on this one, but it just extended
the report preparation life of the Model4
by about five more years.

A patch has to be made to the original
DW2/C1L to change the double-under
line character. The patch we made was:

Patch DW2/CTL (X'BC74 =lEBC)

We had previously made a patch to the
same address to run a Star Powertype daisy
wheel using a legal wheel. That patch was:

Patch DW2/CTL (X'BC74 =1E7C)

We have also made a patch that allows us
to use the Epson LQ-1050 double-under
score in conjunction with printer codes to
change the double underline sign from
"=" to "(" and ")". I will make those
available upon request free of charge.

You will also note that it will let you
change fonts on the fly. I was not sure how
well the printer would work with the Model
4, but I have done a set of financial reports
and several letters quite easily. ·

The hard part is setting up the Superscripsit
as I mentioned before. I wanted to confirm
my findings with you and pass on the good
news. TMQ and, of course, yourself, have
been worlds of help to me and I figure I owe
something back.

Letters to MISOSYS

Anyone interested in the above can con
tact me and I can point them in the right
direction. From a professional standpoint,
I needed the ability to double underline the
financial reports that I issue. It seems I
have found a way to be as teChnologically
proficient as the MSDOS crowd!

External Jumbo

Fm MISOSYS, Inc: We had a query
concerning the usefulness of the external
drive kit for the Colorado Memory Sys
tems tape drives (DJIO and DJ20). The
external kit which we provide as item R
TD-KlO includes the external adaptor for
the drive. This is a small board which uses
one rear mounting but does not use a slot
(i.e. it needs nothing from the main board
bus). The adaptor board is available sepa
rately as part R-TO-All.

There are two reasons for using the exter
nal adaptor: one is to move a single drive
between two or more computers, each of
which has the adaptor card; and the other
is where you have no free 5.25" (or 3.5")
mounting or floppy port available.

To move a tape drive between two ma
chines, order one drive, one external kit,
and one AB 11 adaptor. Consider a few
tapes as well - the 60 foot tapes are used
with software compression to get the 120M/
250M capacity.

Alternatively, for external use exclusively,
one should give thought to using the
Trakker; this is Colorado Memory System's
tape device which connects up to the PC' s
standard parallel printer port.

- 9-

LB/LB86 Print Bug

Fm MISOSYS, Inc. Wilbert Hannes re
ported a problem when attempting to print
labels on a three-across grid simulta
neously with three copies of each label.
LB users are aware that with a single label
print defmition, you can request printing
more than one copy of a label, or print on
more than one label across. You can even
specify both printing operations for the
same print run.

When you printlabelsacross a page (some
times refered to as two-up or three-up)
with but one image of each label, LB will
print across the page for as many labels as
you specify. If on the other hand, you
specify one label across but more than one
image of each label, LB will print a single
image of each label, then re~print another
set of labels for as many cOpies as you
requested. · ·

But if you specify both actions simulta
neously, LB uses a separate print algo
rithm to printmultiplecopies sequentially
with the labels across the page. This type
of printing is the only specillcation which
uses the particular algorithm. I cannot
explain why it was designed that way as it
was in the original LB 1.0 implementa
tion. But a bug was introduced into the
coding of the algorithm during the devel
opment of one of the 2.x upgrades.

In order to fix the bug, it was necessary to
re-compiletheMS-DOS versionLB1.EXE
module (or the LB/OV1 LS-DOS version
module). Ifyouhaveaneedtodo this kind
ofprinting,youmayretumthediskwhich
contains the LB 1 file (should be disk 2 of
2) to obtain a corrected version.

Letters to MISOSYS

Volume VI.iii THE .MISOSYS QUARTERLY- Summer 1993 Volume VII.ii

Or how to re-order an indexed file with the least number of moves

by Roy Soltoff

Computers were originally designed to
manage numeric calculations - the first
being designed to aid in census data sum
marization. But for quite a few years, it
seems that the manipulation of textual
data has been the primary deployment of
computers. Back in the Winter 89/90 issue
of The MISOSYS Quarterly (Volume IV,
Issue ii), I posted the results of a poll I came
across which revealed that 98% of the
preferred applications of PC users were in
the areas of spreadsheet (numbers) and
word processing (textual). 90% of users
employed computers for database man
agement (mostly textual), 84% for desk
toppublishing(textualagain),andsoforth.

With the solid emphasis on the manipula
tion of textual data, data sorting is a widely
used operation. Sorting can also take a
good deal of the computer resources - not
so much because of the CPU power re
quired for sorting, but for the time in
volved in shuffling data into and out of the
computer's memory so string compari
sons can be made. There are also many
different sorting techniques, no one of
which is the optimum for all given collec
tions of data. Thus, employing the proper
sorting algorithm should be done after a
careful analysis of the organization of the
data to be sorted.

Most of us, though, do not bother to write
our own sort algorithms. We either use a
sort function supplied by the host environ
ment or adapt one found in a book to the
environment we are usingforourprogram
which requires the sorting of data.

Whatever sort algorithm is ultimately cho
sen, there are only two distinct flavors
used in adapting the sort algorithm to the
intended application. The question is asked,
Do I want to resequence the data? Or do I

Inside TMQ

want to simply create an ordered index to
the data set? Then again, just what do I
mean by an ordered index?

Let me illustrate this by an example. Sup
pose you hadasimplifiedsetof data which
consisted of five records, each containing
surnames:

Smith
Jones
Lee
Adams
Clinton

If such a list of records were placed (or
dered) alphabetically, it would appear as
follows:

Adams
Clinton
Jones
Lee
Smith

It does not matter what sort algorithm was
used to resequence the data; what matters
is that now the data can be accessed se
quentially in alphabetical order.

Butsuppose youdidnotwant to change the
physical sequence of the data? How could
you achieve the same results (i.e. accessi
bility of the data in alphabetical order)
without physically resequencing the data?
Here's one such technique. Establish a
secondary file which references the physi
cal record numbers of the original set of
data. This data set would now appear
grouped as follows; for the purpose of this
simplistic set of data, I'll just use a base
index ofl.

1 Smith
2 Jones

- 10-

3
4
5

Lee
Adams
Clinton

Thus, Smith is the fustrecord; Jones is the
second record, etc. Now before we can
access any of the actual records of sur
names, we have to first access the list of
references. Whatever sort algorithm we
employ to resequence the surnames alpha
betically needs to be coded to alter not the
sequence of the surnames, but the se
quence of the reference numbers. Just like
you refer to an index in the back of a book,
the reference numbers become an index to·
theactualdata.Let'slookatthealphabeti
cally-ordereddatasetwhentheindexnum
bers are used.

4 Smith
5 Jones
2 Lee
3 Adams
1 Clinton

Well the setofindex numbersdoesn 'tlook
ordered; however, the index numbers taken
in sequence now reference the data in a
correct alphabetical sequence. For instance,
if you want to print off the list, you read the
first index number which is "4". This tells
you that the first record is record 4,
"Adams". The second record alphabeti
cally is determined by the value of the
second entry in the reference index; "5"
points to "Clinton". Essentially, each
record from 1 to n is addressed by
RECORD[INDEX[J]]. Okay ,so what have
you gained? In this illustration, you have
burdened yourself with having to read an
extra piece of data before you can get at the
data you want. True! In this short list, the
payoff is not evident. But suppose your
data set contained not just five records,
each containing but a single surname, but
the complete personnel data on every postal
employee in the United States - that's
about 800,000 records - each record of
considerable size. Even with a small data
set of ten thousand records- which fit very
comfortably on a small micro, the time
involved in data I/0 for sorting purposes
can become significant - more than step
ping out for that cup of coffee. The use of

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

accessing data by means of an index can
save considerable time when you have to
re-sequence the data. And for most bases
of data, data entry of new records and
deletion of outdated records is a continu
ing process -one which requires the reor
deringofthe record sequence for access. If
you have less than 65536 records, you can
even get by with an integer-sized index
reference file.

Now that! have sold you on the usefulness
of keeping data organized by using an
index file, I must then expose you toone of
the problems which can arise. Sooner or
later, you will come up with a reason for
wanting the data physically re-ordered.
With the desired sequence stored in your
index file, what technique can you employ
to move all the records around? Obvi
ously, the operation is a moving operation.
Here's where I am finally getting around
to the meat of the topic.

Many moons ago I worked for AT&T
Long Lines in the microwave radio fre
quency interference group. The function
of this group was to study the impact of
proposed microwave routes (then used for
long distance telephone and private line
communications) on existing AT&T mi
crowave repeater stations. Partofthe work
involved connecting together a sequence
of topographic maps to examine the to
pography over the line of sight transmis
sion route, noting the evidence of objects
or terrain which could interfere with the
proper transmission and reception of the
microwave signal. Essentially, an eleva
tion profile was developed and fed into a
computer program which calculated the
signal loss caused by the distance between
the repeaters and the terrain profile. An
other program was also used which ana
lyzed all other microwave communica
tions in the same frequency band which
then calculated the level of competing
signals reaching the repeater's antenna.
The work was done to gain evidence in
case a proposed transmitter would inter
fere with the reception of an existing sta
tion requiring a protest of the FCC appli
cation, or to plan a new route.

Inside TMQ

mM 360 computers were used in a time
sharing environment to access the data
and programs. At the time, the particular
time share system used was MUSIC, which
stood for McGill University System for
Interactive Computing. All of our pro
grams were coded in FORTRAN, which is
where I started out with my programming
endeavors.NowmMwasneverknownfor
thequickestsortingimplementations.Frus
tration with ffiM's sort is probably what
spawned many competing firms which
specialized in mainframe sort implemen
tations. Whether or not it was frustration
or curiosity. there was a fellow by the name
of Guy Ohlinger in the other District of our
Division who began to implement his own
sort routine which he called SRTMRK -
short for SORT MARK (FORTRAN lim
ited sup-program names to six characters
at the tiine). SRTMRK was able to sort all
FORTRAN data types- andlbelievefaster
than the supplied mainframe sort utility. I
recollect that Guy eventually re-coded it in
360assembly and convinced the Account
ing Department (back then, it was the
Accounting Departments which had con
trol of all computer installations) to install
hisSRTMRKasacompany-wideresource.
I am sure that was a tough sell since when
did Accounting ever listen to Engineer
ing?

SRTMRK was so-called because it did not
re-sequence the data, but rather marked
the data's ordered position in an index
array. This is where you typically gain
speed, not having to reshuffle all the data.
Well since the need always arises that data
some times needs to be physically re
arranged, Guy also did another imple
mentation of his SRTMRK which option
ally re-arranged the data; this one was
called SRTREA - short for SORT and
REARRANGE. The re-arranging func
tion used a technique which he called a
ring move. I have never seen that term
used in any textbook; however, it is a very
elegant method of re-arranging an in
dexed sequence of data always guarantee
ing the minimum amount of disk I/0.
Let's look at that concept

Given a set of data records whose ordered

- 11-

sequence is known, the optimum algo
rithm for re-arranging the data to the
desired sequence is one in which no record
is read or written more than once, and for
which no record already in its proper
position (by coincidence) is read at all.
The ring move algorithm essentially treats
the set of data and its corresponding index
arrayasalinkedlistofdisconnectedrecord
chains. At any record position, the algo
rithm needs to know simply what record
goes into this position?

I have employed the ring move in two of
my products. The oldest implementation
was written in C as part of the PSORT
utility which is included with PRO-W AM.
The more recent implementation was done
using assembler as a part of the HDPACK
disk defragger. In the latter case, you
really want to minimize the number of
accesses to the disk in order to re-arrange
the fragments of flies throughout the disk.
HDPACK actually sorts the disk files ac
cording to their hash index table entry
numbers and their granuleioffsets consid
ered relative to drive itself (i~. more akin
to the cluster number used in the directory
structure of an MS~DOS disk). The or
dered sequencing is performed using a
shell sort, then the actual disk granules are
re-ordered using a ring move. Using such
a move, no disk granule is read or written
more than once (i.e. one read, and one
write).

PSORT uses a ring move to re-order the
actual records of the targeted data file.
Since PRO-W AM does not employ in
dexes to files but accesses files purely
sequential, an external sort utility- such as
PSORT - must re-sequence the data
records. It is faster for PSORT to sort the
records using an index, then re-sequence
the records but once using the ring move.

Since this issue continues discussion of
the C language, I thought it appropriate to
illustrate a ring move implementation us
ing PSORT. Besides, it is easier to follow
an algorithm illustrated in a high-level
language from the same algorithm illus
trated in a low-level language. It calls to
mind a lesson back in the early 60's when

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993

we (the class) were learning to code a
hypothetical binary computer called
HYPOVAC. This had about eleven in
structions, all coded using a single 8-bit
bytetoaccesstheinstructionsandmemory.
I recollect that the machine had perhaps
but a handful of instructions: STORE,
LOAD, ADD, CPL, etc. In any event, we
were given a program listing and were
asked what the program accomplished. It
generated the first n entries in the list of
prime numbers by striking out every other,
then every third, then every fourth, and so
forth. But figuring that out was not intu
itively obvious as the extremely low-level
coding masked the actual algorithm. But
back to the ring move algorithm.

PSORTwas designed to sort various PRO
W AM data files - each of which had a
different organization. Thus, the first full
disk record of nearly all of PRO-W AM's
data files (those sortable by PSORT) con
tain header data which provides PSORT
with infonnation on the record size, where
the key field(s) to sort are located within
the record, the size of the key field, and the
type of the field: string or integer. This
article does not attempt to cover the entire
PSORT utility program, although the en
tire program is illustrated. I want to con
centrate solely on the ring move algo
rithm. Suffice to say that the first portion
ofPSORTreadsandvalidatesthekeyfield
data contained in the header record.
PSORT then allocates memory for two file
buffers, an index array, and arrays for
pointers to the key field data and the key
data itself. The index arrays are used
during the sorting process to keep the data
position intact and use an index array to
maintain the re-ordered sequence.

An initialization routine then prepares the
index arrays. In particular, the array of
index numbers used in the ringmove algo
rithm is initially filled with the numeric
sequence 1, 2, 3, ... by the code:

for(i=O; i < nrec; i++)

psub [i] i;
}

Inside TMQ - 12-

Volume VII.ii

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993

The keys are then read into the allocated
memory by the readkeysO function. The
keys are then ordered by the shellO son
function with the psub array containing
the resulting soned order. Note that dur
ing the sort, the keys are addressed by a
notation of the form, v [index [j]] .
This is identical to the record access men
tioned previously in our surname example.

The ringmove algorithm then works as
follows:

1. i = next = 0;

The variable "i" is used as a subscript
of the index array - the array which
holds the ordered sequence of the
data. This is set to zero to stan with
the first position as C uses a base of 0
for all arrays. The variable "next" is
used to keep track of the value of "i"
when a chain of linked records is
broken. The meaning of broken is
really a condition ofFALSEin step 3.
"next" is also initialized to zero.

2. while (i <nrec) { }

The variable "nrec" contains the quan
tity of records. The algorithm must
proceed to examine all records in
turn; the completion is noted when
the subscriptreaches the highest num
bered record.

3. if (index [i] == i 1 1 index [i]
-1)

{

++i;
++next;
continue;
}

To use the ringmove algorithm, you
must provide a method to be able to
ascenain an instance of a record which
has been moved into place. An imple
mentation of ringmove is not bound to
any panicular method; rather it is the
whim of the designer. In this imple
mentation, I chose to use an index
value of "-1" to indicate a record
which has already been moved into

Inside TMQ - 13-

Volume VII.iii

Inside TMQ

Volume VI.iii

Inside TMQ

THE MISOSYS QUARTERLY- Summer 1993 Volume VII.ii

- 14-

the correct position. Therefore, this
block of code steps through the index
array examining (1) if a record is
coincidentally in the correct position
and does not need to be moved, or (2)
has already been moved. If either
situation is TRUE, the subscript (and
the next tracker) are incremented and
the algorithm continues with step 2 -
the outer while loop. If neither are
TRUE, then a record needs to be
moved; the algorithm proceeds to step
4.

4. readrec(i,buf2,lrl);
link=index[i]; index[i]=-1;

ThereadrecOfunctionreadstherecord
referenced by the first argument. The
record is read into the buffer identi
fied by the second argument So note
that here we are reading the ith record
which is not the record which belongs
at this position but the record at this
position. Toclarifythis,letslookback
at our simplified case of surnames.
Step 3 would find that neither the
record is in place or the end of a chain
is reached; thus, step 4 would be
exercised with i equal to 0. The
"Smith" record would be read into
buffer 2. The record linking to this
position would be the record which
belongs here or the record pointed to
by the index (index [i]). Step 5 is
then exercised.

5. while ((index [link]) ! = -1)
{

readrec(link,buf1,lrl);
writerec(i,buf1,lrl);
index[i] = -1;
i = link;
link = index (i];
}

In this step of the ringmove, the code
block traverses the records which are
linked together until the end of the
chain is reached (i.e. the completion
code of -1 is found). The "while" tests
for that condition.

The code block reads a linked record

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993

into buffer 1. In our surname ex
ample, that would first be the fourth
record, "Adams"; 4 being the value of
index[O]. Buffer 1 now has the record
which should be in position i (i=O).
That record is written to its proper
place, the index value is changed to
the completion code, the index "i" is
changed to the link value (4), and a
new link is ascertained by the index
value at index[4]. The new link is 3.
Why "3" you may ask? Well since we
have just moved "Adam"toitscorrect
position, we need to read the record
which belongs to the position just
vacated by "Adam". That's record 3!

The next time through the code block,
record 3 ("Lee'1 is read, written to
position 4, the index at4 is changed to
the completion code, the subscript is
changed to 3, the link is changed to 2.
The while tests index[2] and finds a 5
-nothing to terminate the block so the
code block is re-executed.

The next time through the block, we
read Jones from 2 and write Jones to
3, designate position 3 as complete,
change the subscript to 2 and the link
to 5. Once more through the code
block.

The next time through, we read
Clinton from 5 and write Clinton to 2,
show index[5] as complete, change
the subscript to 5 and the link to
index[5] which is equal to 1. The
while now tests index[link] and finds
that it is equal to -1, a completion
code. Therefore, the while terminates
its code block. Proceed to step 6.

6.writerec(i,buf2,lrl); i =
next;

The record we originally read into
buffer2isnowwrittenintoposition5,
the current value of the subscript. The
subscript is now changed to the value
of next and the code execution contin
ues at the original while test in step 2.
From there, the code in step 3 finds
that all records have been moved. The

Inside TMQ - 15-

Volume VII.iii

Inside TMQ

Volume VI.iii

Inside TMQ

THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.ii

- 16-

use of next ensures that all discon
nected record chains are dealt with.

Note that every record was read but once,
and written but once. This satisfies the
requirement of optimality.

As a fmal submision to the subject matter
of sorting, I am reprinting an updated
versionofmySEESHELLprogramwhich
was useful for visually demonstrating the
underlying behavior of the shell sort.
SEESHELL first appeared in NOTES
FROMMISOSYS,Issue3,July 1984. The
program used video memory as the data
memory- each memory address contained
a character of data. Thus the progress of
the sort could be observed simply by look
ing at the screen.

SEESHELL was originally written to be
compiled by LC or PRO-LC. Since my MC
compiler has been out for many years, I
decided to bring SEESHELL up to date by
changing some of its structure for MC's
use, and to allow direct compilation for
either Model III or Model 4 targets.
SEESHELL accesses video memory di
rectly which requires that lllGH$ be be
low X'F400'. As such, the code incorpo
rates testing for a usable value of the
Model 4 high memory pointer to ensure
that your computer does not crash.

Note that SEESHELL uses a single preci
sion floating point function, frndQ, which
requires use of the "+f' compiler option.
The companion DISK NOTES to this
issue contains the program source as well
as the Job Control Language file used to
compile SEESHELL.

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.iii

Inside TMQ - 17- Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.ii

Inside TMQ - 18- Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993

Some older disk directory repair utilities
such as PFIX/CMD from the Toolbox for
LOOS 5 and Toolbelt for LS-DOS 6 by
Powersoft (both now sold by MISOSYS)
are unable to correctly repair the GAT
sector found on LDOS 5.3.x and LS-OOS
6.3.x type disks. This occurs because
beginning with LS-DOS 6.3.0, the previ
ously unused bit3 of byte CDh in the GAT
sector was assigned to indicate whether or
not a disk used the new or old style dating.
When this bit is set, 6.3 style dating is
assumed, when it is reset, pre-6.3 style
dating is indicated.

Older versions of directory repair utilities
(specifically PFIX/CMD) reset this bit
when repairing a disk, even on 6.3 style
disks. This causes LS-DOS 6.3.x to think
it is reading an old date style disk and
causes it to omit the time stamp and incor
rectly interpret the date stamp when using
theDIRcommand RunningDATECONV
sets the bit to 1, but since the dates were
already in the 6.3.x format, they are
scrambled and the time fields are set to
12:00.

This is where UPGA T/CMD comes in.
This Model 1/3/4 program simply sets
GAT +CDh bit 3 to 1. This allows LDOS/
LS-DOS to correctly recognize the dating
style used on the disk.

Operation: After a directory repair opera
tion which corrects a corrupted GAT sec
tor (PFIX :D,G would do that}, simply
type:

OPGA'l' :c!

where d is the drive number. The colon
may be omitted Optionally, the command:

OPGA'l' : c! (ole!)

may be executed where old indicates that
pre-6.3.x style dating is used. This option
is included in case the prograiil is ever
used on an earlier LDOS/LS-DOS disk by
mistake.

Comments: In my experience withPFIX6/
CMD, I only need to run UPGAT after

Inside TMQ

By Scott Toenniessen 1991

- 19-

Volume Vll.iii

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.ii

Inside TMQ -20- Inside TMQ

Volume VI.iii THE MlSOSYS QUARTERLY- Summer 1993 Volume VIT.iii

or

How to work around DMA buffer
origins from ~ high-level language

by Roy Soltoff

Anyone who has programmed a PC at a
low level for any number of years may
have come upon one problem unique to
Direct Memory Access (DMA). Material
has already appeared in The MISOSYS
Quarterly concerning the use of DMA on
the Model 4 equipped with an XLR8er
card (see The Final Solution to the XLR8er
Question issue VI.i; How to Roll Your
Own on the XLR8er, issue V.iv). This
article will therefore present only a spe
cific difficulty when using DMA on a PC
(i.e. x86-based computer).

The dominate x86-architecture chip cur
rent! y is probably the Intel486. This chip
with 32 address lines, can access gigabytes
of memory; however, if one is using MS
DOS as the operating system, the CPU
architecture reverts to the 8086 memory
structure with 20 address lines capable of
directly addressing 1 megabyte of RAM.
The utilization of the 1 megabyte was
defined by ffiM when their firSt PC was
being designed. This memory structure
provided the firSt 640 kilobytes for user
memory, with the rest of addressable
memory used for video memory and the
Basic Input Output System (BIOS).
Memory banking schemes no different
than that used on the TRS-80 Model 4
provide a means of access to additional
memory. However, for ·the purposes of
program execution, they must run within
the 640K region.

Although this appears like a large amount
of memory, it is not. As all systems grow,
we soon exceed our limits.

Inside TMQ

Mostly anyone who has puttered in the
MS-OOS arena knows that the memory
region is not really a linear address space
when any x8~architecture CPU is being
operated in its 8086 mode. When the 16-
bit CPUs firSt arrived after the 8080, Z80,
6805, 6800, etc. chips, there were three
major manufacturers - each with a chip
designed under a different memory archi
tecture. Some folks say that Motorola,
with its purely linearly addressed 68000
had the best design. Apple seemed to think
so. So did the workstation designers who
used that chip to design Unix-based ma
chines. Zilog had a Z8000 chip, intended
to capitalize on their success with the Z80.
The Z8000 used a segmented memory
design with a 64K segment; the segments
were addressed on 64K boundaries. Thus
an absolute address could be generated by
using a segment register to address high
order memory lines with the program
counter addressing the address within the
64K segment Intel also designed their
8088 and 8086 chip with a segmented
architecture using 64K segments; how
ever, unlike the Zilog chip, Intel's used a
segment origin every 16 bytes. There's
segment registers whose contents must be
shifted by 4 bits then added to the program
counter address (referenced as a segment
offset) in order to present a 20-bit address
to the CPU bus~ This certainly appears to
be a Mickey Mouse scheme. The one thing
which Intel had going for them was their
creation of a low-cost 8088 CPU which
had but an 8-bit internal bus and the 20
address lines. This was cheaper than the
8086 with an intemal16-bit bus as well as
cheaper than th~ 68000 and Zilog Z8000.

-21-

According to most text's covering the
design offfiM's PC, the lower cost factor
of the 8088 was a primary reason behind
their choice of the Intel chip. The rest is
history; IBM's selection with a resultant
industry built around ffiM' s choice made
Intel's the chip of choice. The Z8000 fell
by the way side. Motorola still maintained
a presence with Apple's use of the 68000
for the Macintosh, and the workstation
crowd building Unix boxes around the
68000. Also, as Intel created the 80286,
80386, and 80486, Motorola continued
with the 68020, 68030, and 68040.

Let's briefly review the memory
addressability of the Intel8086 CPU fam
ily. These processors use a 20-bit address
bus; thus, addressable memory is from
absolute address X'OOOOO' through
X'FFFFF'- a total of 1,048,576 bytes.

Since the 8086 inf;~rporates only 16-bit
registers, memory space is accessed using
a segmented memory scheme. The entire
1 Megabyte address space is divided into
65536 segments number.ed from X'OOOO'
throughX'FFFF'.Eachsegmentbeginsat
a 16-byte boundary starting from address
X'OOOO'. The following table illustrates
the first few and last few segment ad
dresses mapped into the one megabyte
absolute address space.

Segment Number Address Origin
X'0000' X'00000'
X'0001' X'00010 1

X'0002' X'00020'
X'FFFD' X'FFFDO'
X'FFFE' X'FFFEO'
X'FFFF' X'FFFFO'

An absolute address is constructed by add
ing an offset, also contained in a 16-bit
register, to the address origin of a segment
number (not the segment number itself).
In actuality, since the segment is con
tained in a 16-bitregister, the CPU inter
nally shifts the segment number left by
four bits then adds the offset value. This
produces a 20-bit result - the absolute
address.

Since the segment offset is also a 16-bit

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.ii

value, it is a number between X'OOOO' and
X'FFFF'. Obviously, when the segment is
X'FFFF', an offset greater than X'OOOF'
would be invalid since the address arith
metic algorithm just discussed would over
flow a 20-bit value. Likewise, an offset
value greater than X'7FFF' could not be
used with asegmentvalueofX'F800'. The
8086 CPU does not treat these conditions
as errors but resolves the result to an
address within its addressable range; thus;
they would wrap past X'FFFFF' to
X'OOOOO'. It is a quirk that the 80286 had
a error in its design structure such that
when operating in 8086-mode, the ad
dress overflow would not wrap but actu
ally result in an address above the 1 mega-·
byte region. Extended memory managers
have made use of this fact.

Because the segmented architecture refer
ences segment o~gins at 16-byte bound
aries, another term has been used when
discussing 8086 memory space. That term
is a "paragraph". A paragraph is any 16-
bytes of memory which begins at a 16-byte
boundary. There are, therefore, 65536
paragraphs of memory. Thus, a segment
may be considered to originate at every
paragraph.

Because PC addresses use a summation of
a shifted segment with an offset, there are
many different combinations of segment
and offset which produce identical20-bit
addresses! As a matter of fact, there must
be 4K of combinations which produce any
given 20-bit address. Let's look at an
example to resolve and understand this.
Address X'00040' can be referenced by
any of five combinations of segment and
offset (generally written as
"segment:offset").

0000:0040
0001:0030
0002:0020
0003:0010
0004:0000

These may look oversimplified, so per
haps another example may illustrate the
nature of segment: offset summations. The
address X'6789A' can be generated from

Inside TMQ

these handful of segment offset values (as
well as many other combinations:

6000:789A
6001:788A
5FE2:7A7A

In other words, since the segment value is
shifted left by four bits prior to adding, a
change of one in the segment value could
be counterbalanced by an opposite change
of 16 in the offset value and still sum to the
same machine address.

Once an address is greaterthanOOOO:FFFF,
it can generally be realized using any of
16K combinations. In an actual 8088 or
8086, since addresses above X'FFFFF'
wrap around to 0, any address can be
realized via any of·16K combinations -
even the first 64K of memory.

So why bring up all this history and ad
dressing schemes? Well one reason has to
do with the DMA chip used in the PC, and
themeansofprogrammingit. Youseethat
although the 8086 family of CPUs use a
segmented architeCture on paragraph
boundaries (that's the term applied to the
16-byte segment address), the DMA chip
handles a maximum of 64K at a time but
the memory references must be on 64K
boundaries!

The original PC used an Intel 8237 A
DMA controller. The address registers in
this device are 16-bits wide; thus, the
device can handle at most a transfer of
64K. However, PC design uses a twenty
bit address to select any byte in the one
megabyte address space. For the purpose
of transferring a twenty-bit address to the
DMAcontrollerand associated hardware,
the PC provides a page register for speci
fying the upper four-bits of the twenty-bit
address, and an address register for speci
fying the lower sixteen-bits of the twenty
bit address. The page register controls the
64K block of memory to be referenced in
the DMA transfer while the address regis
ter passes an address within that 64K
block to the DMA chip. Both of these
registers are port mapped. This scheme is
more akin to the segmented architecture of

-22-

the Z8000 than that used in the x86 chips.

Enter DOS Memory Allocation
MS-DOSprovidesthreeservicecallsdeal
ing with memory allocation which can be
used by the programmer at a low-level:
Allocate Memory- functioncall48H;Free
Allocated Memory - Function Call 49H;
and Modify Allocated Memory Blocks -
function call 4AH. The latter is used to
grow or shrink the size of a memory block
previously allocated. With these functions,
the sense of memory block refers to a
specified number of paragraphs; memory
is allocated to a program in paragraphs -
multiples of sixteen bytes. That is also to
say that every memory allocation is pro
vided on a paragraph boundary. Since a
segment address is coincident with para
graph boundaries, every memory alloca
tion can also be considered the start of a
64K :segment.

Not every program running under MS
DOS is big- although at times it seems that
way. If a given program requires less than
64K of data space, every data item can be
stored in a single 64K of space referenced
by a single segment address - only the
offset need be unique. When a program
needs a data space in excess of 64K, each
data item referenced must be resolved by a
possibly unique segment address and an
offset address. Thus, 32 bits are needed to
resolve all data addresses. Because of this,
a program with a data space larger than
64K will run slightly slower than an iden
tical one with less than 64K of data. The
same is true for the program size; pro
gramslargerthan64Krequire32-bitreso
lution for function calls.

MostprogramsforMS-DOSarewrittenin
a high-level language, C is typically the
language of choice for commercial soft
ware; however for Windows, Visual BA
SIC is making some inroads. It is advan
tageous to be able to tell a compiler that a
given program is to use nothing more than
64K of data space. This is done by pre
declaring a memory model for the pro
gram. The Microsoft C compiler provides
six memory models which can be pre-

InsideTMQ

Volume VI.ili THE .MISOSYS QUARTERLY- Summer 1993 Volume VII.ili

declared. These are:

tiny both code and data lim-
ited to a single 64K re-
gion.

small code and data are lim
itedto64Kregionseach.

medium data is limited to 64K
but code is unlimited.

compact code is limited to 64K
but data is unlimited.

large neither code nor data is
limited but individual
arrays are limited to
64K.

huge same as large but indi
vidualarrays can exceed
64K.

If we consider but the frrst three models,
all data addressing is within a single 64K
block of memory. This means that the
same segment address will be used for the
access of all data • only the offset will be
different. As previously shown, the seg
ment origin will be a paragraph boundary
withaonein 16Kchanceofbeingata64K
boundary.

Now look at DMA operation

A DMA controller generally supports two
types of data transfer: memory-to-memory,
or memory to/from I/O device. In brief, the
DMA chip is passed a base address and a
word count • along with other specifica
tions as to the type of transfer. Assuming
data from an 1/0 device (such as a floppy
data channel) is being read into memory,
a byte is transferred to memory, the word
count is decremented, and the address is
incremented. This s~que~c~ ;,.;in continue
until the word count "rolls ovef" from
x·oooo· to X'FFFF'.

What would happen if an attempt was
made to transfer 16K of data when the
machine address origin was 46A0:2603?
An offset of X'2603' looks harmless

Inside TMQ

enough. However, this calculates to a
machine address of X'4E003. This ma
chine address value would require a page
address of X'4' and a base address of
X'E003'. After a transfer of one byte, the
base address would be X'E004' with a
count of X'3FFF'. After the transfer of
8189 bytes, the base address would be
X'FFFF'. The next byte transferred would
causetheaddresstowraptoX'OOOO'. Thus
before even 8K was transferred, the base
address would wrap from X'OOOO' and
anotheralmost8K ofbytes would be trans
ferred not to where you thought would be,
but to some other area overwriting other
data or program code. This is called a
DMA boundary error!

DMA was used in the original ffiMPC to
transfer data to and from the floppy disk
controller. The Floppy Disk Controller
(FDC) chip used in the PC allows multi
sector 1/0. The BIOS also supports the
ability to read or write more than one
sector of data with a single service call.
Allowing the FDC to handle multiple
sector 1/0 can defmitely speed up the
transfer when you want to sequentially
transfer more than one sector - such as in
a track read or write operation.

Afloppydisksectorunder MS-DOS is512
bytes. A 360K floppy has nine sectors per
track - or 4.25K. Since the BIOS allows
multiple sector transfers using a multi
sector memory buffer, the location of such
a buffer must be entirely within the first
59.75K of a segment whose address is on
a 64K boundary. An attempt to use DMA
to transfer even a larger block of data
would impose a greater restriction on the
actual location of the memory buffer. To
guard against DMA boundary errors asso
ciated with floppy 1/0, the original mM
PC BIOS tested the resolved machine
memory address to ensure that the buffer
region remaining in the 64K-bounded
segment block was as large as the number
of bytes to be transferred. If the available
memory was too small, the BIOS returned
an "AttempttoDMAacross64Kboundary"
eiTOr and aborted the floppy I/0 request

I'm sure that this problem caused much

-23-

consternation for a few years. Eventually,
the programmers who wrote the BIOS
code decided to have the BIOS break a
transfer request which traversed a 64K
boundary into multiple transfers automati
cally setting the proper values into the
DMA registers; however, anyone directly
programming the DMA chip would have
to ensure that an overrun condition would
not prevail. But to this day, there are still
machines with a BIOS whose FDC DMA
initilization code cannot handle a request
which would traverse a 64K boundary;
they will return a DMA boundary error.

Now enter high level language

I typically do not get involved with much
low-level programming on the PC. But it
does happen. Ever since MISOSYS ac
quired thePowersoft product line, we have
duplicated TRSCROSS on a Mountain
3200 duplicator. This is a 5.25 inch drive
contained within an apparatus using a
hopper mechanism to feed diskettes to the
drive under software control. Commands
can be sent to the device to drop the
engageddisketteintoone of two bins. a bin
for good disks and a bin for bad diskettes.
The commands and duplicator status are
accessed via a serial port; the floppy drive
is accessed via a standard 34-pin floppy
bus. The duplicator is therefore connect
able to either a TRS-80 or a PC. And in
fact, it is used with both computer types.

Powersoft used the Mountain 3200 for
duplicating their TRS-80 diskettes; it was,
in fact, Powersoft who wrote the TRS-80
duplicator code and licensed it to Moun
tain. Powersoft also wrote a short assem
bly language program to drive the duplica
tor from a Tandy 1000 so they could use it
to duplicate TRSCROSS.

The PC BIOS provides floppy 1/0 service
calls in a nature similar to the TRS-80.
The FDC chip used in the PC is a little
smarter than the chip used in the TRS-80
as the PC's chip handles the formatting
pattern directly. All you need to provide it
for formatting is a data table containing
essentiallythehead,sector,andtracknum
bers. It doesn't take a lot of code to write

Inside TMQ

Volume YI.iii THE .MlSOSYS QUARTERLY- Summer 1993 Volume VII.ii

a program which can format a disk, read
from a source disk, then write to the for
matted destination disk. The BIOS code
can handle a large number of sectors trans
ferred at one time (given the above atten
tion to buffer origin relative to transfer
size) - but only on single sided media. The
BIOS does not automatically reference the
second side when an attempt is made to
transfer more than a track of sectors; the
BIOS goes merrily along continuing with
the same side. MS-DOS diskette organi
zation is akin toLDOS andLS-DOS for2-
sidedmedia;asequenceofsectorstraverses
all like-numbered tracks of a cylinder
before stepping to the next higher-num
bered cylinder. So for a 2-sided floppy disk,
you can only transfer a track at a time.

I suspect that because of this, and because
Powersoft did not need a lot of disk space
for the TRSCROSS program, they decided
to put it on single-sided media. Not only
that, they used a disk structure which was
prevalent on the first PCs - eight sectors
per track rather than the then current nine.
This all resulted in a quicker duplication
time. Speed was important, also because
the source diskette was a master floppy.
Unlike my use of hard drive based
diskD ISK floppy diskette images to dupli
cate my TRS-80 products directly from a
harddrive,readingthe TRSCROSS source
from a floppy was slower to access the
source.

My problem was that I wanted to use the
Mountain for duplicating some of my MS
DOS products -like LB86. The data base
requires a much larger diskette capacity
for releasing the product; it just fits on two
360K diskettes.

Enter 2Fll.,E and 2FLOPPY

The March 1991 issue of PC Magazine
contained a pair of utilities written by
Stephen D. Cooper which could be useful
for assisting in the modem transfer of a
floppy disk, or in easily duplicating floppy
disks on a one-floppy machine. One pro
gram, called 2FILE, read a floppy disk,
detected its configuration, and created a
file image - including a configuration

Inside TMQ

header - of the floppy onto a hard drive.
The companion program, 2FLOPPY ,read
the image from the hard drive, set up the
DOS to configure the drive according to
the configuration of the original floppy,
then formatted a new diskette and copied
the image to the new disk. The pair of
utilities was written in C; source was
available for download from PC Magnet
the PC Magazine forum on CompuServe.

I obtained the utilities back when they first
came out, and had used them for about a
year duplicating small numbers of MS
OOS disks- my MS-DOS business never
quite grew to the point of needing a dupli
cator. However, with an optimistic view of
LB86 sales, and the Mountain 3200 avail
able, I proceeded tore-write the 2FLOPPY
code to access the Mountain 3200. All I
had expected to have to do was to provide
the serial port access to control the dupli
cator and obtain its status. Or so I thought!

The 2FLOPPY code always masked the
BIOS error and provided its own error.
Thus, whenever I got an error such as
destination disk write erro.r, I never knew
why until I got down into the code and
debugged it with CodeView. It was then
that I discovered that the errors were the
DMA boundary errors. The difficulty in
debuggingcameaboutbecausethememory
environment changed whenever I ran the
program from Code View relative to run
ning the program from the DOS prompt.
As you see now, theerrorwouldoccuronly
when the program's data segment origin
was such that the allocated floppy I/0
buffer crossed a 64K boundary. Believe
me, it is difficult to debug a program which
always works when you are debugging it
but always bombs when you are running it
normally. The program's behavior also
changed when run on different machines
- partly caused by the loading of different
TSR modules in a particular machines
configuration which resulted in different
memoryoriginsforthe2FLOPPY program.

To solve the problem on a permanent basis
meant that I had to do one of two things.

1. Write a transfer function which

-24-

breaks a transferrequestinto two
requests when the memory block
isknowntotraversea64Kbound
ary, or

2. Write a memory allocation func
tion which guaranteed to be to
tally within a segment whose ori
gin was a 64K boundary.

I chose to implement the latter function
which I named getbuffQ.

Memory allocation under Microsoft's C
compiler - and probably every other C
compiler,allocatesrequestedmemoryfrom
the heap starting from the bottom and
going to higher-numbered addresses.
There is no way to force the allocation of
a lower-addressed block; however, there is
at least one technique which can force the
allocation of a higher-addressed block.

Consider the case where unfortunately,
the heap (i.e. the data space) starts within
2K of the end of a 64K-boundary block of
memory. If I attempt to allocate 4K for an
I/0 buffer and use it for floppy I/0, I will
getaDMA boundary error. So what! want
the getbuffO function to do, is to test the
memory region obtained for boundary in
tegrity. If it cannot be used for the desired
pwpose, free it up; allocate a dummy block
of memory so that a subsequent allocation
will be origined at a higher address. Then
test the new block to see if it too cannot be
used. Repeat the de-allocation, allocate
dummy, allocate buffer sequence until ei
ther no more memory is available, or until
the desired buffer is found. The former
unworkable situation could only occur if a
demand for greater than about 32K is
requested. That would not occur for the
2FLOPPY program.

One thing which 2FLOPPY does is re
quireasecondi/0 buffer to read back what
waswrittenforcomparisonwiththesource
which was written. That is an additional
level of integrity which virtually guaran
tees a flawless duplicated diskette. There
fore, 2FLOPPY requires two identically
sized buffers.

Inside TMQ

Volume VI.iii THE ltnSOSYS QUARTERLY- Summer 1993 Volume Vll.iii

Enter the C memory function

Lets start pulling apart the getbuffO func
tion to see how it operates.

As mentioned, 2FLOPPY needs two buff
ers. I therefore specified a global variable
dummy declared as an array of pointers to
char(i.e. char*dummy[2];). What is passed
to getbuffO as an argument, is the number
of the desired buffer. Thesizeoftheneeded
buffer is also a global variable, buffsize.

Since getbuffO will be returning a pointer
to a memory block, and is passed an inte
ger argument, it is declared as follows:

char * getbuff(num)
int num;

The function needs five variables: tempsize,
an unsigned int used to store the current
size of the dummy buffer allocation; buffer,
a pointer to char which holds the pointer
to the allocated memory block; segment
and offset, also unsigned ints used to hold
the 16-bit segment and 16-bit offset val
ues; and address, a long integer which will
hold the full20-bit resolved address.

Loops are used in just about every pro
gram. C provides three forms of looping:
the for loop; the while loop; and the do
while loop. In each case, some expression
determines a conclusion to the loop. Some
times its useful to terminate a never-end
ing loop by some particular condition which
may be more difficult to code into the
normal loop termination-testing construct
In such a case, you form a forever loop and
terminate its looping by a break or return
to the calling function. Forever loops can
be coded using a while construct with an
always true condition, such as while
(TRUE) { }. Butsincethewordforever
has "for" as a syllable, it is sensible to
construct a forever loop using the for
construct as in: -

.for···(;;)
{

This particular for is devoid of initializa-

Inside TMQ

tion, test, and increment statements. The
subsequent for code block is the entire
code of the function. The first statement
attempts to obtain a memory block of the
needed size. MallocO returns a NULL if
the requested size cannot be allocated;
getbuffO just returns this NULL to the
calling function to indicate the error con-
dition. ·

if (!(buffer= (char *)
malloc(buffsize)))

return buffer;

The 20-bit address is calculated inC code
with the same IJ1ethod as previously dis
cussed. The segment value is shifted left
four bits then added to the offset address.
The FP _OFF and FP _SEG are macros
defmed in Microsoft C and are used to
extract the offset and segment addresses
given a pointer. Since 2FLOPPY is com
piled using a small memory model, the
buffer pointer needs to be cast to a far
pointer as required by the macros.

address = (offset = FP OFF (
(char far*) buffer) + (FP-SEG (
(char far*) buffer) <<4));

To determine whether the buffer obtained
traverses a 64K boundary, I simply strip
off the page value (the high 4-bits), add the
buffer size to the address, then see if the
value is less than 65535.1f so, the buffer is
okay to use for the floppy I/0 and I return
to the calling function with the buffer
pointer.

if (((address & OxFFFF) +
buffsize) < OxFFFF)

return buffer;

The alternative is an unusable buffer ad
dress. So I free up the buffer, and any
previous dummy buffer which may have
been allocated;

free(buffer);
if (dummy [num])

free(dummy[num]);

Since I know that the offset was within a
buffersizeoftheboundary,Isimplycalcu-

-25-

late the difference between the offset ori
ginandthe boundary. This tempsize, which
when allocated, should guarantee that the
next allocation will provide a memory
origin at the beginning of a 64Kboundary.

tempsize = OxlOOOO- offset;

With the dummy size calculated, I allocate
that sized memory block. The test for a
valid allocation guards against the un
known and unconsidered which is bound
to happen to every programmer.

if (! (dummy [num] = (char *)
malloc(tempsize)))

return buffer;

With the dummy block allocated, the clos
ing brace of the forever code block is
reached, causing a repeat of the first state
ment of the block.

With the getbuffO modifications made to
the 2FLOPPY program, I have not experi
enced any further DMA boundary errors
while running the program on four differ
ent machines with quite different runtime
memory configurations.

Function code source appears in its en
tirety on page 18.

InsideTMQ

Volume VI.iii THE .MlSOSYS QUARTERLY- Summer 1993 Volume VTI.ii

or
A Tandy 102 makes a good speedometer

by James Cameron
Digital Equipment Corporation (Australia) PIL

(cameronjames@snoc01.enet.dec.com)

This article first appeared in SYDTRUG
news. SYDTRUG is the Sydney TRS-80
User Group in Australia. Copywrite held
by James Cameron. Permission granted
to P"!'lish ~r distribute without significant
modificatzon provided my name remains
on it.

Here is a good example of how to persuade
th~ Tandy 102 to do two things at once; in
thiS case monitor incoming pulses as well
as allow text editing and other programs to
run.

Hardware

The hardware is the sensor from a Tandy
overspeed alarm, which is connected be
tween two halves of the speedometer cable
after cutting it This provides one pulse for
every 0.7 metres of distance in my car.
?ther hardware options are viable; for
ms~ce the magnet and coil approach
used m the Electronics Australia January
1991 issue. Whatever the source; pulses
mustfindtheirwaytotheTandy 102'sBar
Code Reader port, which is a nine pin "D"
so~ket on th~ left side. One of the pins of
this socket IS connected to bit 3 of port
X'BB ', so by reading from this port, the
state of the pin can be determined.

Software

The software consists of two modules a
machine language interrupt routine for
taking speed samples, and a BASIC pro
gram for the user interface. Therestofthis
article deals with the software.

Inside TMQ

Sampling

The sampling routine has gone through
three generations so far. These have been· ,

1. Count up to n pulses and return· the
~ is calculated by determinin~ the
ume taken to count then pulses. The value
n is varied according to the prior speed
~pie; n is increased if the speed is
mcreased. Problem : no data is returned
if the car has stopped, so the display cannot
be updated.

2. Count the number of pulses received in
n 254ths of a second. Again, n is varied
~ccording to the prior speed sample; n is
mcreased if the speed is decreased. Prob
lem : distance measurements are difficult
and inaccurate.

3. Maintain an odometer, byprovidingan
~nterrupt routine that counts pulses and
mcrements the odometer accordingly. The
speed is calculated based on the odometer
change over time. The odometer is cali
brated in pulses, and is 32 bits wide.

I needed to do a lot of reverse-engineering
of the 102's ROM, since I didn'thave any
reference material on entry points or fea
tures. What I found of importance was
that. there is a 254th second interrupt
routine v~tor that I could hook my own
program mto. A three byte vector high in
memory normally containing a RET in
struction needed to be replaced with a
jump instruction to my own routine.

-26-

!he sampling program is in two parts; the
mterrupt driven pulse detector, and the
BASIC interface routines. The pulse de
tector gains control every 254th of a sec
ond; it checks to see if the state of the
incoming data line has changed from on to
off, and if so, increments the odometer
value, which is only 16 bits wide at this
point

Theinterfaceroutinesprovideanumberof
functions;

a. start interrupt; installs the replacement
vector in high memory,

b. stop interrupt; restores the vector to a
RET instruction,

c. clear odometer; resets both the interrupt
routine's 16 bit odometer and the internal
32 bit value.

d. return odometer; returns the current
value of the odometer to the BASIC pro
gram.

e. return odometer at next second; returns
~e odometer value after waiting for the
mternal clock to tick over to the next whole
second.

User Interface

The BASIC program used for the user
interface has also evolved. Initially, it
displayed only the speed calculated as a
thr~ digit number. Now it displays a
honzontal graph with calibration mark
ings, along with a historic vertical graph
for the past 240 samples. Function keys
allow the sample period to be varied; just
for the fun of it. A shorter sample means
faster response, but a decrease in accuracy.
The program also allows recording of the
current odometer setting in a text file for
later analysis or trip calculations.
Soundeffects are also emitted; with an
overspeed alarm setting available.

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993

Calibration
The frequency of the pulses is proportional
to the rotation speed of the rear axle or
speedo cable. At a given road velocity, the
frequency is also dependent on a number
of other factors;

a. how well inflated your tyres are,

b. the design of the sensor device,
(number of pulses per rotation),

c. the circumference of your tyres,

d. the relative gearing between the
tyres and the sensor.

I found (d) to be the most difficult to
obtain, since I had no information apart
from actual trial and error. I found the
ratio in my instance to be 2:5, that is, for
every five speedo cable revolutions, two
tyre revolutions were observed.

Overall though, I took the accurate ap
proach; count how many pulses are de
tected in a measured kilometre. Pop out to
the Great Western Freeway between
Parramatta and Penrith, and watch for the
white measured kilometre signs; labelled
"mk" on a white background. [US readers
are encouraged to do thesame ;-)- JC]

Two listings follow. The first is the ma
chine code for the hardware interface rou
tines, and the second is the working proto
type user interface program written in
BASIC.

Inside TMQ -27-

Volume VII.iii

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.ii

Inside TMQ -28- Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

Inside TMQ -29- Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VIT.ii

The program is divided into a number of
sections;

Lines P\apose

1to2

8 to40

200to910

Main Loop

s~in~subrou
tine

Function key subrou
tines

1000 to 1250 Initialisation subroutine

2000 onwards Development subrou
tines, Reserve string
space and execute
initialisation routine.

0 CLEAR1024:GOSOB1000
Line 1 is the start of the main loop. The
program spends most of its time in this
loop obtaining speed samples and updat
ing the screen.

Calculate the optimum revolutions to wait
for based on the last known speed (K) and
the current conversion value (C). Ensure it
is within reasonable limits; a zero value
corresponds to 65536 revolutions.

1 R=K*C:IFR<1TBENR=1
ELSEIFR>60TBENR=60

Make a call to the interface routine re
quesQilg a change of revolution count
(request code 7).

2 CALL'0,7,R:

Ask the interface for the most recent speed
sample (code 6), which is returned in the
arrayT.

CALL'0,6,~TR(T(O)):

Calculate the current speed and execute
thesubroutinethatdisplaysitonthescreen
and updates the graphics.

Note that since the revolution counter
change request is deferred by the interface
routine, we must calculate the current
speed using the revolutions count that was

Inside TMQ

used by the interface. This is returned in
the second element of the array. The first
element contains the time taken for that
number of revolutions in "ticks" of the
interrupt clock.

K-Z*T(1)/T(O):GOS'OB8:

Lastly, before doing it all again; check to
see if the file logging flag is on, and if so,
save this sample into the log file. (Oh; my
kingdom for an ENDIF in BASIC!)

Dli'I~1, 'l'IIdi$;K;:
GOT01ELS:&:1

Line 8 is the start of the screen update
routine. It uses the value K (speed in
kilometresperhour)andupdatesthescreen.
It does a few other things; like make
beeping noises when the speed passes a
multiple of ten.

First; ignore silly speeds; since they would
cause the code to fail with illegal function
call errors (value out of range errors).

8 IFK>1300RK<O
TB:&:NRET'ORN

Next; update the current speed displays if
the speed has changed since we last knew
it Update the number;

9 IFKO<>KTB:&:N
PRINT@280,
MID$(STR$(K)+" ",2,3);:

then the horizontal bargraph. Here's a
chance for some optimisation; in that the
code checks to see if it is increasing the
bargraph size or decreasing it, and only
performs graphics commands on the ap
propriate part of the bargraph.

IFDKOTB:&:N
LINB(K0+25,50)

(K+24,52),1~BF:KO=K
:&:LS:&:

LIN:&:(K0+24,50)
(K+25,52),0,BF:KO=K

Now place a new speed sample on the
historical vertical bargraph. Put the ver
tical bar in;

20 LIN:&:(X,4S)-(X, (48-K/

-30-

3)MOD64):

increment the horizontal position;

X=(X+1)MOD239:

and blank out the next bar.

LIN:&:(X,48)-(X,O},O:
If the speed moves past a multiple of ten,
make a noise. If we accelerate from 59 to
61, then we'll here two short tones, the
second higher than the first; indicating an
acceleration. I've set the tones up with

. particular intervals, so it's possible to
know exactly how fast you are going if you
are musically trained.

Jl=K\10:
IFJl<>JOTB:&:N

IFJ0>50RJ1>5TBEN
SO'ONDS(J0),5:

SO'ONDS(J1),5:JO=J1
ELS:&:

JO=Jl
40 UT'ORN

The following sections of code handle the
function keys. They are executed auto
matically when the corresponding key is
pressed.

F1 is called "CLEAR". This asks the
interface to reset it's odometer settings
and any other internal state information.

200 'clr
210 CALL'0,3,1'reset
215 B:&:EP
220 UT'ORN

F2 is called "ON''. This enables the inter
rupt portion of the interface routine. To
start the program, you would type RUN,
then press the Fl then the F2 keys.

300 'on
310 CALL'0,4'start
315 BE:&:P
320 UT'ORN

F3 is called "OFF'. This disables the
interrupt routine. You'd do this if you
were leaving the car ...

400 'off
410 CALL'0,5'stop
415 BOP

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

420 RETURN

F8 is called "MENU". This just returns to
the menu.

Since the interface routine runs as an
interrupt, it keeps running. This means
that the odometer will keep incrementing
even though the operator starts editing a
text file or runs something else.

500 MENU

F4 is called "RECD". This turns on or off
recording mode. It also turns on or off a tag
on the screen indicating the current state
of recording mode.

600 'record
610 IFFI%TBEN

FI%•(0>0):
LINE(239,54)

(23S, SO) I 0, BF
ELSE

FI%=(0=0):
LINE(239,54)

(235, 50) I 1, BF
620 RETURN

F5 is called "MARK". It accepts a location
name and records it, the time and the
current odometer value in the log file. The
main complexity here is the need to avoid
the use of the ordinary BASIC INPUT
verb, as this will blank the line following
entry; which will destroy part of the screen
graphics. Instead, the INPUT$0 function
is used to build our own version ofiNPUT.

Additionally, the TAB key is used to
resample the odometer. This is useful if
you would rather enter the description of
the location then take an odometer sample.
You can even take a sample in the middle
of entering the text.

The backspace key is also handled; see line
750.

Variables used here are;

A$
B$
C$
TO

the entered keystroke
the accumulated text line
the time and odometer sample
the odometer sample itself

Inside TMQ

700 'mark
710 B$•""
720 CALL
U,1,V1RPTR(T(O)):

C$= TIME$+
STR$(T(O))+STR$(T(1))
730 PRINT@O, "Mark "C$"
"BCBR (27) "lC";
740 A$=INPUT$(1):

Ii'ASC(A$)=9TBEN720
750 IFASC(A$)•8TBBN

IFLBN(B$)<>0TBBN
B$=L2FT$(B$,LBH(B$)-

1):
PRINTCBR$(8)"

"CBR$ (8) ·;:
GOT0740

ELSE740
760 Ii'ASC(A$)<>13TBBN

B$=B$+A$:
PRINTA$;:
GOT0740

770 PRINTI1,"Mark "C$"
"B$
780 RETURN

F6 is called "RV down". This halfs the
current conversion ratio used to calculate
the optimum number of revolutions given
thecurrentspeedinkilometresperhour. It
is this ratio which determines the accuracy
of the speed displayed. As the ratio de
creases, the accuracy drops in that the
difference in displayed speeds becomes
greater.

The one advantage to decreasing this ratio
is that it enables far more samples to be
taken in a given time interval.

800 'rvd
810 C=C/
2:SOOND523,1:RETURN

F7 is called "R V up". This doubles the
conversion ratio; and thus increases the
accuracy of the displayed speed at the
expense of longer update times. No good
in city traffic.

900 'rvu
910
C=C*2:SOOND523,1:RETURN

The last section; initialisation, is placed
here merely to increase the speed of the
mainloop, by reducing thenumberoflines
that BASIC has to scan through when
resolving a GOTO or GOSUB statemenL

-31-

I guess this BASIC also finds variables by
scanning a list sequentially, so in line
1010 I declare fli'St those variables in order
by frequency of use.

1000 'initialisation
1010 DBFINT A-Z: DEFSNG
C,Z:

DIMT(4), lC, I, 0,
A$, A, B, C, D, L, P1,
P2, R, U, S(12)
1030 U=-2579' address
of interface routine

Lines 1050 and 1060 define the ratio used
to convert from speedometer cable revolu
tions per clock tick to kilometres per hour.
There are two lines used here because I've
been experimenting. The first line is the
ratio that I've settled on purely by trail and
error; looking at the car's speedometer
and comparing against the program's cal
culated speed. (I wasn't driving at the
time).

The second line is what it should be ac
cording to theory. 0.7115 is the distance
traveled in metres per sp®do cable revo
lution; as measured using chalk and the
subroutine at line 2000. 255.7545 is the
number of interrupt clock ticks per sec
ond; which was measured using the built
in realtime clock chip. I can't see the
relationship between this value and the
published 2.4 MHz clock speed of the
Tandy 102. 3.6 is the conversion ratio for
converting metres per second to kilometres
per hour.

1050 Z=775.29862
1060
Z=0.7115*255.7545*3.6'
factor
1070 FI%•(0>0)
logging fila flag

The variable Cis the ratio used to calculate
the optimim number of revolutions per
sample according to the current speed.

1080 C=0.6
conversion ratio

This section sets up the function key names
on the label line. The SCREEN verb turns
off the label line first, then turns it on when
the keys are set up. The last two lines

Inside TMQ

Volume VI.iii THE .MISOSYS QUARTERLY- Summer 1993

enable the BASIC function key interrupt
logic; whereby the function key routines
are called regardless of what the mainline
is doing.

1090 DATA "Clr", "On",
"Off", "Reed", "Mark",
"Rvd", "Rvu", "Menu"
1100 SCREENO,O:

FORJ=1T08:
READ A$

1110 IFA$<>""THEN
KEYJ,A$+CBR$(13):

NEXT
ELSE

KEYJ,A$:
NEXT

1120 SCREEN0,1
1130 ONKEY GOSOB 200,
300, 400, 600, 700,
800, 900, 500
1140 KEYON

This section prepares the array that holds
the tone values used in the sound effects.

1150 FOR J=O TO 12:
READS(J): NEXT
1160 DATA 0, 0, 0, 0,
0, 12538, 8368, 6642,
5272, 4184, 2092, 1046,
523
1170 OPEN"speeds"FOR
APPEND AS 1

This part of the initialisation routine pre
pares the constant part of the screen dis
play. It is placed here so that it can be
invoked separately if required.

1200 ' refresh screen
1210 CLS
1220 FOR J=24 TO 154
STEP10: PSET(J,53):
NEXT
1230 FOR J=84 TO 124
STEP20: PSET(J,54):
NEXT
1240 LINE(24,50)
(24,52)
1250 RETURN

Here starts the development and tuning
section. The two routines are started by
RUN nnnn where nnnn is the line number
of the routine.

The first routine is used to display the
number of cable rotations detected. It's
useful when calibrating the distance trav-

Inside TMQ -32-

Volume VII.ii

Inside TMQ

Volume VI.iii THE .MISOSYS QUARTERLY- Summer 1993 Volume VII.iii

elled per rotation. Unfortunately, it won't
actually work with the version of the inter
face routine in use now.

2000 GOStJB1000:
CLS:
R-1:
X=O:
PRIN'l'#1,"aample

dual rotations ... "
2010 CALLtJ,D,R
2015 Ili'INDY$•" "'l'BEN

PRIN'l'#1,X:
PRIN'l'@40,X

2020 X•X+2:
PRIN'l'@O,X;

2030 SOtJND600,1
2040 GO'l'02010

This routine is used to playback a recorded
speed sampling session.

3000 'see
3010 GOStJB1000: CLOS:&:l
3020
OPEN"speeda"li'ORINPtJ'l'AS1
3030 'l'$=INPtJ'l'$(9,1):

B$=""
3040 A$=INPtJ'l'$(1,1):

Ili'A$<>" "'l'BEN

B$=B$+A$:
GO'l'03040

ELSE
IC=VAL (B$) :
GO SUBS

3050 Ili' NO'l' :&:Oli'(1)
3030
3060 A$=INPtJ'l'$(1):

PRIN'l'@O,;:
RUN

HARD DRIVES FOR SALE

'l'BEN

Genuine Radio Shack Drive Boxes with Controller,
Power Supply, and Cables. Formatted for TRS 6.3,

installation JCL in
cluded. Hardware
write protect op-

~,~~~~~~~~~ij~~~!J erational. Docu-~ mentation and
new copy of

MISOSYS RSHARD5/6 Included. 90 day warranty.

5 Meg $175 10 Meg $225 15 Meg $275 35 Meg $445

Inside TMQ

Sf:tipping cost add to all prices

RoyT. Beck
2153 Cedarhurst Dr.

Los Angeles, CA 90027
(213) 664-5059

-33-

\)S~s ~~s~IJ
-t~S ,~,, NJ~

RADIO SHACK
TANDY OWNERS!

Find the computer
equipment that TANDY

no longer sells.
PACIFIC COMPUTER EXCHANGE

buys and sells usedTANDY

TRSDOS
XENIX

MSDOS
COMPUTERS &
PERIPHERALS

We sell everything from Model 3's and 4's
to Tandy 6000's, 1000's to 5000's, Laptops,
and aU the printers and hard disks to go with
them. If we don't have it in stock, we wDI do
our best to find it for you. We have the
largest data base of used Radio Shack
equipment to draw from. All equipment
comes with warranty.

PACIFIC
COMPUTER

EXCHANGE
The One Source For

Used Tandy Computers
1 031 S.E. Mill, Suite B

Portland, Oreg_on 97214
(503) 236-2949

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume VII.ii

IJ()grCiclecl f\JilCti1DilS f()r Vr~v·M£
by J.F.R. Slinkman

Included on the associated DiskNotes 7.3
is an archive which contains a new dftxO
function {FDFIX/ASMandFDFIX/REL),
a new roundO math function (ROUND/C
and ROUND/REL), and a new and much

faster hi-res graphics paintO function
(PAINTI/ASM and PAINT/REL).

The new roundO function is documented
as follows:

round(MA TH)

This function obtains the rounded value of a double.

double round(argx);
double argx;

round(MA TH)

argx - is the double for which the rounded value is desired. .

Description:

This function returns the integer closest in value to "argx." Fractional values
less than 0.5 will cause "argx" to be rounded down. Otherwise, "argx" will be
rounded up.

Warning:

Do not attempt to use this function without a forward declaration, either in the
source code or in the MA TII.H header file.

Example:

#include <stdio.h>
#include <math.h>
I* also #option OSERLIB i~ necessary */
double round() ;
char inbu~[81];

double d1, d2;
main () { puts ("round: enter your number: BO:&' to

exit") ;
while (TROE)

{
i~ (!gats (inbu~))

break;
d2 • round(dl = atod(inbu~));
print~("dl • %g, d2 = tg\n", dl, d2) ;
}

}
round:
-3.33
6.666

enter your number: BO:&' to ezit
ldl ... -3.33, d2 = -3
ldl = 6.666, d2 = 7

Inside TMQ -34-

Also, when using the new roundO func
tion in your programs, you MUST do one
of two things: (l)alwaysincludea "double
roundQ;"forwarddeclarationinyourpro
gram; or (2), edit your MATII.H header
file to add "roundO" to the list of extern
doubles (on the assumption you'll never
use the roundO function without also us
ing other double functions requiring in
clusion of the MATH.H header).

(NOTE: while you 'reatit, you should also
edit your STDIO.H header by adding the
line: "long lab sO;", as this was omitted in
release 1.6, and causes the function to fail
if a forward declaration is not included in
each and every program that uses it.)

Also included are the listing P AINT3/
ASM and the module P AINT/REL. This
is a replacement for the old P AINT2/
ASM. It's about three times faster, and
uses about 70 bytes less memory, than the
previous version.

INSTALLATION:

PAINT:

If you have MLm, load IN/REL, and use
the <R>eplace option to replace the old hi
res PAINT module with the new one sup
plied.

If you do not have MLm, and already have
the hi-res PAINT module in your
USERLm, then you must recreate your
USERLm from scratch, using the new
PAINT module instead of the old one.

ROUND:

If you have MLffi,load MATH/REI.., and
use the <l>nsert option to put ROUND
before CEIL.

If you do not have MLm, add ROUND to
your USERLm.

FDFIX:

If you have BOTII MI...m and SLm:

The module FDFIX is found in LmN

Inside TMQ

Volume VI.iii THE MISOSYS QUARTERLY- Summer 1993 Volume Vll.iii

REL. Unfortunately, LIBA/REL is too
large to fit in the .MLIB buffer. However,
if you have the utility SLIB, you can still
put the new FDFIX module into LIBA as
follows:

Split LIBA into 2 segments via: SLIB
LIBA9100:d

Then use .MLIB to load LIBA/R.Ol, and
use the <R>eplace option, specifying
FDFIX. Then <S>ave LIBA/R.Ol back to
disk. Next, rejoin the two segments via:
APPENDLIBA/R02LIBA/R01 (STRIP),
followed by a COPY LIBA/R.Ol LIBN
REL.

NOTE: If you don 'thave SLIB, you should
buy if NOW, as it's cheaper than dirt, and
on the MISOSYS, Inc., close-out list

IfyoudonothaveBOTHMLIBandSLIB,
you must add FDFIX to your USERLIB.

Inside TMQ

Have a fun summer

-35- Inside TMQ

r---~ l Choose LDOS 5.3.1 or LS-DOS 6.3.1 l
* Both Model I and Model m IDOS support similar

commands; DOS commands are Virtually s1m.ilar to
Model 4 LS-DOS 6.3.1 syntax where possible.

* The DATE CC?.~d. '"Date?" prompt on boot. and ..
the @DA'TE:;~~f/ support a date range of. ... ·sz.."'

~~~_,1980 through~emb~31 
/ .. ~~··· .:" ... ~·~ 

* 
* 

-* 
I memory b~ . .lm~Ml to*~9Si" 

of modules resident in t/P.::~i:I:Y.er·sY9t\un1memory 
and high memory. '· .>:.:·· ; •• ~:· .. 

* Specify SYSTEM ... ........ . . -... ·.·· 
drive dl for d2. Elth~rxn.ay·~:the system drive, and 
a Job Control Language file may be active on either of 
the swapped drtves. 

* The TED text editor has commands to print the 
entire text buffer, or the contents of the first block 
encountered. Obtain directortes from TED. tool 

* Have extended memory known to the DOS? The 
SPOOL command now permits the BANK parameter 
entry to range from 0-30 instead of 0-7. 

* Alter the logical record length of a file with '"RESET 
I filespec (LRL=nt 
I * Specify '"RESET filespec (DATE=OFF)" to restore a 

file's directory entry to the old-style dating ofpre-6.3 
release. Specify "RESET filespec (DATE=ON)'" to es- · 
tabllsh a file's directory date as that of the current 
system date and time. 

* SYSTEM command supports removable and reus
able BLINK. ALIVE, and UPDATE memory modules. 

* Double-density BOOT support for Model I with 
embedded SOLE and FORMAT (SYSTEM). Supports 
mirror-image backup, too. Reworked FDUBL driver 
eliminates PDUBLand RDUBLand takes less memoxy. · 
enhanced resident driver eliminates 1WOSIDE. 

* Model III version auto-detects Model4 for installation 
of Kl4 keyboard drtver; supports CAPS, CTRL, and 
function keys. 

* SPOOL command offers Pause, Resume, and Clear 
parameters. (OFF) attempts to reclaim memory used. 

* Both Model I and Model m support similar com
mands: all features of Model m 5.3.0 are in Model I 
5.3.1. That includes such facilities as DOS and BASIC 
help flies, SETCOM and FORMS library commands, 
TED text editor, BASIC enhancements"" etc. All DOS 

~1 

groomed for Motleh4 LS-DOS 
possible. 

with a 30-day 
available for 

of5.3.1 for 
are-a~ble. Versions of 

6.3.1 for the Mod·er~ and ModellfFe available; Model 1 
4 French and German version8' are also available 
(specify 6.3.1 F or 6.3.1 D). Some Model I 5.3.1 
features require lower case or DDEN adaptor. 

~~ 
~ 

DOS and BASIC 
Reference Manuals 

!\ 

Two new reference manuals are available from MISOSYS. First, we 
have the the 349-page "LDOSTM & LS-DQSTM Reference Manual", 
catalog number M-40-060. This single manual fully-documents both 
LDOS 5.3.1 and LS-DOS 6.3.1 in a convenient 8.5" by 5.5" format. 
If you usc one, or the other, or even both DOS versions, you may want 
to bring yourself up to date with a single manual. Gone are the many 
pages of update documentation. Price is $30 plus $5 S&H. 

We also publish the "LOOSTM & LS-DOSTM BASIC Reference 
Manual". This 344-page book, catalog M-40-061, covers the inter
preter BASIC which is bundled with LDOS 5.3.1 (even the ROM 

· BASIC portion}, the interpreter BASIC which is bundled with LS
DOS 6.3.1, and both Model I/111-mode andModcl4-mode EnhComp 
compiler BASIC. One convenient 8.5" by 5.5" manual covers all four 
BASIC implementations for $25 plus $5.00 S&H. Since this new 
manual covers our compiler BASIC, you can purchase the disk 
version of EnhComp for $23.98. 

·-----------------------------------------~ 






